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Distributed non-convex optimization problem

min
x∈Rd

f (x) :=
1

n

n∑
i=1

fi (x)

▶ x ∈ Rd is the optimization variable

▶ f is the global objective function, bounded below by f ∗

▶ n is the number of workers

▶ fi is the local objective function distributed to the ith worker, and fi
has L-Lipschitz continuous gradient, for each i ∈ {1, · · · , n}

▶ The local objective functions are heterogeneous in general, i.e., fi ̸= f
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Stochastic oracle and intermittent communication

T subsequent queries to a fully stochastic oracle SO:

▶ The workers input
(
x1t , · · · , xnt

)
∈ Rd×n

▶ The SO outputs
(
G1(x1t , ξ

1
t ), · · · ,Gn(xnt , ξ

n
t )
)
∈ Rd×n

▶
{
ξit : 0 ≤ t ≤ T − 1

}
are i.i.d. random variables

▶ Assume Eξit

[
Gi (x, ξ

i
t)
]
= ∇fi (x), Eξit

∥∥Gi (x, ξ
i
t)−∇fi (x)

∥∥2
2
≤ σ2

The worker communicates after every τ iterations:

▶ Assume T is a multiple of τ

Notations:

▶
(
g1t , · · · , gnt

)
=
(
G1(x1t , ξ

1
t ), · · · ,Gn(xnt , ξ

n
t )
)

▶ x̄t =
1
n

∑n
i=1 x

i
t

▶ f ∗ = infx∈Rd f (x)

▶ ∆ = f (x̄0)− f ∗
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Minibatch SGD vs. Local SGD/SCAFFOLD

Initialization: x10 = · · · = xn0

MbSGD.

xit+1 =

{
x̄t−τ+1 − η

n

∑n
j=1

∑τ−1
k=0 g

j
t−k , if t + 1 is a multiple of τ,

xit , otherwise

LocalSGD.

xit+1 =

{
x̄t−τ+1 − η

n

∑n
j=1

∑τ−1
k=0 g

j
t−k , if t + 1 is a multiple of τ

xit − ηgit , otherwise

SCAFFOLD.
(next page)
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Minibatch SGD vs. Local SGD/SCAFFOLD

Algorithm 1 SCAFFOLD
1: for r = 0, 1, · · · ,R − 1 do
2: for i ∈ [n] do in parallel
3: for k = 0, 1, · · · , τ − 1 do
4: xi2rτ+k+1 = xi2rτ+k

5: end for
6: ĝi

(rτ) =
1
τ

∑τ−1
k=0 g

i
2rτ+k

7: end for
8: Compute and broadcast: ĝ(rτ) =

1
n

∑n
i=1 ĝ

i
(rτ)

9: for i ∈ [n] do in parallel
10: for k = τ, τ + 1, · · · , 2τ − 2 do
11: xi2rτ+k+1 = xi2rτ+k − η

(
gi
2rτ+k − ĝi

(rτ) + ĝ(rτ)

)
12: end for
13: end for
14: Compute: x̄2(r+1)τ = x̄2rτ − η

n

∑n
j=1

∑2τ−1
l=τ gj

2rτ+l

15: Broadcast: xi2(r+1)τ = x̄2(r+1)τ , for each i ∈ [n]
16: end for
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Assumptions (gradient smilarity)

Assumption 1 (Standard gradient similarity – SGS)

For some ζ ≥ 0, we have

sup
x∈Rd

1

n

n∑
i=1

∥∇fi (x)−∇f (x)∥22 ≤ ζ2.

Assumption 1+ (Uniform gradient similarity – UGS)

For some ζ̄ ≥ 0, we have

sup
x∈Rd

sup
i∈[n]

∥∇fi (x)−∇f (x)∥22 ≤ ζ̄2
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Assumptions (Hessian similarity)

Assumption 2 (Standard Hessian similarity – SHS)

For some δ ∈ [0, L], we have

1

n

n∑
i=1

∥∇fi (x)−∇f (x)−∇fi (y) +∇f (y)∥22 ≤ δ2 ∥x− y∥22 ,

for all x, y ∈ Rd .

Assumption 2+ (Uniform Hessian similarity – UHS)

For some δ̄ ∈ [0, 2L], we have

∥∇fi (x)−∇f (x)−∇fi (y) +∇f (y)∥2 ≤ δ̄ ∥x− y∥2 ,

for all x, y ∈ Rd and for all i ∈ [n].
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Assumptions (weak convexity, Lipschitz continuous Hessian)

Assumption 3 (Weak convexity – WC)

For some ρ ∈ [0, L], we have

fi (x) +
ρ

2
xTx is convex,

for all i ∈ [n].

Assumption 4 (Lipschitz continuous Hessian – LCH)

For some M ≥ 0, there exists (at least) one function f̂ such that:
f̂ ∈ conv{f1, · · · , fn}, and∥∥∥∇2f̂ (x)−∇2f̂ (y)

∥∥∥
2
≤ M∥x− y∥2 ,

for all x, y ∈ Rd .
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MbSGD

Lemma 1

There exists η > 0 such that MbSGD ensures the following upper bound on
1
T

∑T−1
t=0 E ∥∇f (x̄t)∥22:

O

(
L∆

R
+

√
L∆σ2

nτR

)
.

Ruichen Luo (ISTA) LocalSGD & SCAFFOLD EUROPT 2025 9 / 15



LocalSGD: non-convex speedup from WC

Lemma 2 ([Kol+20])

Under Assumption 1, there exists η > 0 such that LocalSGD ensures the
following upper bound on 1

T

∑T−1
t=0 E ∥∇f (x̄t)∥22:

O

(
L∆

R
+

√
L∆σ2

nτR
+

(
L∆ζ

R

) 2
3

+
(L∆σ)

2
3

τ
1
3R

2
3

)
.

Theorem 1 (Ours)

Under Assumptions 1 and 3, there exists η > 0 such that LocalSGD ensures
the following upper bound on 1

T

∑T−1
t=0 E ∥∇f (x̄t)∥22:

O

((
L

τ
+ ρ

)
∆

R
+

√
L∆σ2

nτR
+

(
L∆ζ

R

) 2
3

+
(L∆σ)

2
3

τ
1
3R

2
3

)
.
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LocalSGD: convex speedup without UGS

Lemma 3 ([WPS20])

Under Assumption 1+, if all fi are convex, x∗ ∈ argminx∈Rd f (x), and
∥x̄0 − x∗∥2 ≤ D, then there exists η > 0 such that LocalSGD ensures the

following upper bound on 1
T

∑T−1
t=0 E [f (x̄t)]− f ∗:

O

LD2

τR
+

σD√
nτR

+

(
Lζ̄

2
D4

R2

) 1
3

+

(
Lσ2D4

τR2

) 1
3

 .

Theorem 2 (Ours)

Under Assumption 1, · · ·

O

LD2

τR
+

σD√
nτR

+

(
Lζ2D4

R2

) 1
3

+

(
Lσ2D4

τR2

) 1
3

 .
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LocalSGD: improved conditioning from UHS & LCH

Theorem 3 (Ours)

Under Assumptions 1, 2+ and 4, there exists η > 0 such that LocalSGD

ensures the following upper bound on 1
T

∑T−1
t=0 E ∥∇f (x̄t)∥22:

O

(
L∆

R
+

√
L∆σ2

nτR
+

(
δ̄∆ζ

R

) 2
3

+
(L∆σ)

2
3

τ
1
3R

2
3

+

(
M2∆4ζ4

R4

) 1
5

)
.
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SCAFFOLD: existing analyses

Lemma 4 ([Kar+20])

Suppose in Line 14 of Algorithm 1, a different global stepsize ηg can be
used when aggregating the updates. There exists ηg ≥ η > 0 such that

SCAFFOLD ensures the following upper bound on 1
R

∑R−1
r=0 E ∥∇f (x̄2rτ )∥22:

O

(
L∆

R
+

√
L∆σ2

nτR

)
.

Lemma 5 ([Kar+20])

Suppose ĝi(rτ) = ∇fi (x̄2rτ ) in Line 6 of Algorithm 1. Under Assumptions 2+
and 3, if all fi are quadratic, then there exists η > 0 such that SCAFFOLD

ensures the following upper bound on 2
T

∑R−1
r=0

∑τ−1
k=0 E ∥∇f (x̄2rτ+τ+k)∥22:

O

((
L

τ
+ δ̄ + ρ

)
∆

R
+

√
L∆σ2

nτR

)
.
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SCAFFOLD: speedup without quadratic/UHS

Theorem 4 (Ours)

Under Assumptions 2 and 3, there exists η > 0 such that SCAFFOLD ensures
the following upper bound on 2

T

∑R−1
r=0

∑τ−1
k=0 E ∥∇f (x̄2rτ+τ+k)∥22:

O

((
L

τ
+

√
Lδ + ρ

)
∆

R
+

√
L∆σ2

nτR
+

(L∆σ)
2
3

τ
1
3R

2
3

)
.

Theorem 5 (Ours)

Under Assumptions 2 to 4 with M = 0, there exists η > 0 s.t. SCAFFOLD

ensures the following upper bound on 2
T

∑R−1
r=0

∑τ−1
k=0 E ∥∇f (x̄2rτ+τ+k)∥22:

O

((
L

τ
+
√
δ̄δ + ρ

)
∆

R
+

√
L∆σ2

nτR
+

(δ̄∆σ)
2
3

τ
1
3R

2
3

)
.

Ruichen Luo (ISTA) LocalSGD & SCAFFOLD EUROPT 2025 14 / 15



SCAFFOLD: speedup without quadratic/UHS

Theorem 4 (Ours)

Under Assumptions 2 and 3, there exists η > 0 such that SCAFFOLD ensures
the following upper bound on 2

T

∑R−1
r=0

∑τ−1
k=0 E ∥∇f (x̄2rτ+τ+k)∥22:

O

((
L

τ
+

√
Lδ + ρ

)
∆

R
+

√
L∆σ2

nτR
+

(L∆σ)
2
3

τ
1
3R

2
3

)
.

Theorem 5 (Ours)

Under Assumptions 2 to 4 with M = 0, there exists η > 0 s.t. SCAFFOLD

ensures the following upper bound on 2
T

∑R−1
r=0

∑τ−1
k=0 E ∥∇f (x̄2rτ+τ+k)∥22:

O

((
L

τ
+
√
δ̄δ + ρ

)
∆

R
+

√
L∆σ2

nτR
+

(δ̄∆σ)
2
3

τ
1
3R

2
3

)
.

Ruichen Luo (ISTA) LocalSGD & SCAFFOLD EUROPT 2025 14 / 15



References

[Kar+20] Sai Praneeth Karimireddy et al. “Scaffold: Stochastic controlled
averaging for federated learning”. In: International Conference
on Machine Learning. PMLR. 2020, pp. 5132–5143.

[Kol+20] Anastasia Koloskova et al. “A unified theory of decentralized
sgd with changing topology and local updates”. In: International
Conference on Machine Learning. PMLR. 2020, pp. 5381–5393.

[WPS20] Blake E Woodworth, Kumar Kshitij Patel, and Nati Srebro.
“Minibatch vs local sgd for heterogeneous distributed learning”.
In: Advances in Neural Information Processing Systems 33
(2020), pp. 6281–6292.

Ruichen Luo (ISTA) LocalSGD & SCAFFOLD EUROPT 2025 15 / 15


