New Nonconvex Analysis of LocalSGD and SCAFFOLD

Ruichen Luo¹

Joint work with
Sebastian Stich² Samuel Horvath³ Martin Takac³

¹Institute of Science and Technology Austria (ISTA)

²CISPA Helmholtz Center for Information Security

³Mohamed bin Zayed University of Artificial Intelligence (MBZUAI)

EUROPT'2025, Southampton, England

$$\min_{\mathbf{x} \in \mathbb{R}^d} f(\mathbf{x}) := \frac{1}{n} \sum_{i=1}^n f_i(\mathbf{x})$$

 $\mathbf{x} \in \mathbb{R}^d$ is the optimization variable

$$\min_{\mathbf{x} \in \mathbb{R}^d} f(\mathbf{x}) := \frac{1}{n} \sum_{i=1}^n f_i(\mathbf{x})$$

- $\mathbf{x} \in \mathbb{R}^d$ is the optimization variable
- ightharpoonup f is the global objective function, bounded below by f^*

$$\min_{\mathbf{x}\in\mathbb{R}^d} f(\mathbf{x}) := \frac{1}{n} \sum_{i=1}^n f_i(\mathbf{x})$$

- $\mathbf{x} \in \mathbb{R}^d$ is the optimization variable
- ightharpoonup f is the global objective function, bounded below by f^*
- n is the number of workers

$$\min_{\mathbf{x}\in\mathbb{R}^d} f(\mathbf{x}) := \frac{1}{n} \sum_{i=1}^n f_i(\mathbf{x})$$

- $\mathbf{x} \in \mathbb{R}^d$ is the optimization variable
- ightharpoonup f is the global objective function, bounded below by f^*
- n is the number of workers
- ▶ f_i is the local objective function distributed to the ith worker, and f_i has L-Lipschitz continuous gradient, for each $i \in \{1, \dots, n\}$

$$\min_{\mathbf{x}\in\mathbb{R}^d} f(\mathbf{x}) := \frac{1}{n} \sum_{i=1}^n f_i(\mathbf{x})$$

- $\mathbf{x} \in \mathbb{R}^d$ is the optimization variable
- ightharpoonup f is the global objective function, bounded below by f^*
- n is the number of workers
- ▶ f_i is the local objective function distributed to the ith worker, and f_i has L-Lipschitz continuous gradient, for each $i \in \{1, \dots, n\}$
- lacktriangle The local objective functions are *heterogeneous* in general, *i.e.*, $f_i \neq f$

Stochastic oracle and intermittent communication

T subsequent queries to a fully stochastic oracle SO:

- ▶ The workers input $(\mathbf{x}_t^1, \dots, \mathbf{x}_t^n) \in \mathbb{R}^{d \times n}$
- ▶ The \mathcal{SO} outputs $(G_1(\mathbf{x}_t^1, \xi_t^1), \cdots, G_n(\mathbf{x}_t^n, \xi_t^n)) \in \mathbb{R}^{d \times n}$
- $\{\xi_t^i: 0 \le t \le T-1\}$ are i.i.d. random variables
- ► Assume $\mathbb{E}_{\xi_t^i} [G_i(\mathbf{x}, \xi_t^i)] = \nabla f_i(\mathbf{x}), \ \mathbb{E}_{\xi_t^i} ||G_i(\mathbf{x}, \xi_t^i) \nabla f_i(\mathbf{x})||_2^2 \leq \sigma^2$

Stochastic oracle and intermittent communication

T subsequent queries to a *fully stochastic oracle* SO:

- ▶ The workers input $(\mathbf{x}_t^1, \cdots, \mathbf{x}_t^n) \in \mathbb{R}^{d \times n}$
- ▶ The \mathcal{SO} outputs $(G_1(\mathbf{x}_t^1, \xi_t^1), \cdots, G_n(\mathbf{x}_t^n, \xi_t^n)) \in \mathbb{R}^{d \times n}$
- $\{\xi_t^i: 0 \le t \le T-1\}$ are i.i.d. random variables
- ► Assume $\mathbb{E}_{\xi_t^i}[G_i(\mathbf{x}, \xi_t^i)] = \nabla f_i(\mathbf{x}), \ \mathbb{E}_{\xi_t^i} \|G_i(\mathbf{x}, \xi_t^i) \nabla f_i(\mathbf{x})\|_2^2 \leq \sigma^2$

The worker communicates after every au iterations:

lacktriangle Assume T is a multiple of au

Stochastic oracle and intermittent communication

T subsequent queries to a fully stochastic oracle \mathcal{SO} :

- ▶ The workers input $(\mathbf{x}_t^1, \cdots, \mathbf{x}_t^n) \in \mathbb{R}^{d \times n}$
- ▶ The \mathcal{SO} outputs $\left(G_1(\mathbf{x}_t^1, \xi_t^1), \cdots, G_n(\mathbf{x}_t^n, \xi_t^n)\right) \in \mathbb{R}^{d \times n}$
- ▶ $\{\xi_t^i: 0 \le t \le T-1\}$ are i.i.d. random variables
- Assume $\mathbb{E}_{\xi_t^i}[G_i(\mathbf{x}, \xi_t^i)] = \nabla f_i(\mathbf{x}), \ \mathbb{E}_{\xi_t^i} \|G_i(\mathbf{x}, \xi_t^i) \nabla f_i(\mathbf{x})\|_2^2 \le \sigma^2$

The worker communicates after every au iterations:

ightharpoonup Assume T is a multiple of au

Notations:

$$ightharpoonup ar{\mathbf{x}}_t = rac{1}{n} \sum_{i=1}^n \mathbf{x}_t^i$$

Initialization: $\mathbf{x}_0^1 = \cdots = \mathbf{x}_0^n$

MbSGD.

$$\mathbf{x}_{t+1}^i = \begin{cases} \bar{\mathbf{x}}_{t-\tau+1} - \frac{\eta}{n} \sum_{j=1}^n \sum_{k=0}^{\tau-1} \mathbf{g}_{t-k}^j, & \text{if } t+1 \text{ is a multiple of } \tau, \\ \mathbf{x}_t^i, & \text{otherwise} \end{cases}$$

Initialization: $\mathbf{x}_0^1 = \cdots = \mathbf{x}_0^n$

MbSGD.

$$\mathbf{x}_{t+1}^i = \begin{cases} \mathbf{\bar{x}}_{t-\tau+1} - \frac{\eta}{n} \sum_{j=1}^n \sum_{k=0}^{\tau-1} \mathbf{g}_{t-k}^j, & \text{if } t+1 \text{ is a multiple of } \tau, \\ \mathbf{x}_t^i, & \text{otherwise} \end{cases}$$

LocalSGD.

$$\mathbf{x}_{t+1}^i = \begin{cases} \mathbf{\bar{x}}_{t-\tau+1} - \frac{\eta}{n} \sum_{j=1}^n \sum_{k=0}^{\tau-1} \mathbf{g}_{t-k}^j, & \text{if } t+1 \text{ is a multiple of } \tau \\ \mathbf{x}_t^i - \eta \mathbf{g}_t^i, & \text{otherwise} \end{cases}$$

Initialization: $\mathbf{x}_0^1 = \cdots = \mathbf{x}_0^n$

MbSGD.

$$\mathbf{x}_{t+1}^i = \begin{cases} \mathbf{\bar{x}}_{t-\tau+1} - \frac{\eta}{n} \sum_{j=1}^n \sum_{k=0}^{\tau-1} \mathbf{g}_{t-k}^j, & \text{if } t+1 \text{ is a multiple of } \tau, \\ \mathbf{x}_t^i, & \text{otherwise} \end{cases}$$

LocalSGD.

$$\mathbf{x}_{t+1}^i = \begin{cases} \bar{\mathbf{x}}_{t-\tau+1} - \frac{\eta}{n} \sum_{j=1}^n \sum_{k=0}^{\tau-1} \mathbf{g}_{t-k}^j, & \text{if } t+1 \text{ is a multiple of } \tau \\ \mathbf{x}_t^i - \eta \mathbf{g}_t^i, & \text{otherwise} \end{cases}$$

SCAFFOLD.

(next page)

Algorithm 1 SCAFFOLD

```
1: for r = 0, 1, \dots, R-1 do
                for i \in [n] do in parallel
  2:
  3:
                        for k = 0, 1, \dots, \tau - 1 do
                                \mathbf{x}_{2r\tau+k+1}^i = \mathbf{x}_{2r\tau+k}^i
  4:
  5:
                        end for
                       \hat{\mathbf{g}}_{(r\tau)}^{i} = \frac{1}{\tau} \sum_{k=0}^{\tau-1} \mathbf{g}_{2r\tau+k}^{i}
  6:
 7:
                end for
                Compute and broadcast: \hat{\mathbf{g}}_{(r\tau)} = \frac{1}{r} \sum_{i=1}^{n} \hat{\mathbf{g}}_{(r\tau)}^{i}
 8:
                for i \in [n] do in parallel
 9:
                        \begin{array}{l} \text{for } k = \tau, \tau+1, \cdots, 2\tau-2 \text{ do,} \\ \mathbf{x}_{2r\tau+k+1}^i = \mathbf{x}_{2r\tau+k}^i - \eta \left(\mathbf{g}_{2r\tau+k}^i - \hat{\mathbf{g}}_{(r\tau)}^i + \hat{\mathbf{g}}_{(r\tau)}\right) \end{array}
10:
11:
12:
                        end for
                end for
13:
                Compute: \bar{\mathbf{x}}_{2(r+1)\tau} = \bar{\mathbf{x}}_{2r\tau} - \frac{\eta}{n} \sum_{i=1}^{n} \sum_{l=\tau}^{2\tau-1} \mathbf{g}_{2r\tau+l}^{j}
14:
                 Broadcast: \mathbf{x}_{2(r+1)\tau}^i = \bar{\mathbf{x}}_{2(r+1)\tau}, for each i \in [n]
15:
16: end for
```

Assumptions (gradient smilarity)

Assumption 1 (Standard gradient similarity – SGS)

For some $\zeta > 0$, we have

$$\sup_{\mathbf{x}\in\mathbb{R}^d}\frac{1}{n}\sum_{i=1}^n\|\nabla f_i(\mathbf{x})-\nabla f(\mathbf{x})\|_2^2\leq \zeta^2.$$

Assumptions (gradient smilarity)

Assumption 1 (Standard gradient similarity – SGS)

For some $\zeta \geq 0$, we have

$$\sup_{\mathbf{x}\in\mathbb{R}^d}\frac{1}{n}\sum_{i=1}^n\|\nabla f_i(\mathbf{x})-\nabla f(\mathbf{x})\|_2^2\leq \zeta^2.$$

Assumption 1+ (Uniform gradient similarity – UGS)

For some $\overline{\zeta} \geq 0$, we have

$$\sup_{\mathbf{x} \in \mathbb{R}^d} \sup_{i \in [n]} \|\nabla f_i(\mathbf{x}) - \nabla f(\mathbf{x})\|_2^2 \le \overline{\zeta}^2$$

Assumptions (Hessian similarity)

Assumption 2 (Standard Hessian similarity – SHS)

For some $\delta \in [0, L]$, we have

$$\frac{1}{n}\sum_{i=1}^{n}\|\nabla f_i(\mathbf{x})-\nabla f(\mathbf{x})-\nabla f_i(\mathbf{y})+\nabla f(\mathbf{y})\|_2^2\leq \delta^2\|\mathbf{x}-\mathbf{y}\|_2^2,$$

for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^d$.

Assumptions (Hessian similarity)

Assumption 2 (Standard Hessian similarity – SHS)

For some $\delta \in [0, L]$, we have

$$\frac{1}{n}\sum_{i=1}^{n}\|\nabla f_i(\mathbf{x})-\nabla f(\mathbf{x})-\nabla f_i(\mathbf{y})+\nabla f(\mathbf{y})\|_2^2\leq \delta^2\|\mathbf{x}-\mathbf{y}\|_2^2,$$

for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^d$.

Assumption 2+ (Uniform Hessian similarity – UHS)

For some $\overline{\delta} \in [0, 2L]$, we have

$$\|\nabla f_i(\mathbf{x}) - \nabla f(\mathbf{x}) - \nabla f_i(\mathbf{y}) + \nabla f(\mathbf{y})\|_2 \le \overline{\delta} \|\mathbf{x} - \mathbf{y}\|_2$$

for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^d$ and for all $i \in [n]$.

Assumptions (weak convexity, Lipschitz continuous Hessian)

Assumption 3 (Weak convexity – WC)

For some $\rho \in [0, L]$, we have

$$f_i(\mathbf{x}) + \frac{\rho}{2}\mathbf{x}^\mathsf{T}\mathbf{x}$$
 is convex,

for all $i \in [n]$.

Assumptions (weak convexity, Lipschitz continuous Hessian)

Assumption 3 (Weak convexity – WC)

For some $\rho \in [0, L]$, we have

$$f_i(\mathbf{x}) + \frac{\rho}{2}\mathbf{x}^\mathsf{T}\mathbf{x}$$
 is convex,

for all $i \in [n]$.

Assumption 4 (Lipschitz continuous Hessian – LCH)

For some $\mathcal{M}\geq 0$, there exists (at least) one function \hat{f} such that: $\hat{f}\in \mathbf{conv}\{f_1,\cdots,f_n\}$, and

$$\left\| \nabla^2 \hat{f}(\mathbf{x}) - \nabla^2 \hat{f}(\mathbf{y}) \right\|_2 \le \mathcal{M} \left\| \mathbf{x} - \mathbf{y} \right\|_2$$

for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^d$.

MbSGD

Lemma 1

There exists $\eta > 0$ such that MbSGD ensures the following upper bound on $\frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E} \|\nabla f(\bar{\mathbf{x}}_t)\|_2^2$:

$$\mathcal{O}\left(\frac{L\Delta}{R} + \sqrt{\frac{L\Delta\sigma^2}{n\tau R}}\right)$$
.

LocalSGD: non-convex speedup from WC

Lemma 2 ([Kol+20])

Under Assumption 1, there exists $\eta > 0$ such that LocalSGD ensures the following upper bound on $\frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E} \|\nabla f(\bar{\mathbf{x}}_t)\|_2^2$:

$$\mathcal{O}\left(\frac{L\Delta}{R} + \sqrt{\frac{L\Delta\sigma^2}{n\tau R}} + \left(\frac{L\Delta\zeta}{R}\right)^{\frac{2}{3}} + \frac{(L\Delta\sigma)^{\frac{2}{3}}}{\tau^{\frac{1}{3}}R^{\frac{2}{3}}}\right).$$

LocalSGD: non-convex speedup from WC

Lemma 2 ([Kol+20])

Under Assumption 1, there exists $\eta > 0$ such that LocalSGD ensures the following upper bound on $\frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E} \|\nabla f(\bar{\mathbf{x}}_t)\|_2^2$:

$$\mathcal{O}\left(\frac{L\Delta}{R} + \sqrt{\frac{L\Delta\sigma^2}{n\tau R}} + \left(\frac{L\Delta\zeta}{R}\right)^{\frac{2}{3}} + \frac{(L\Delta\sigma)^{\frac{2}{3}}}{\tau^{\frac{1}{3}}R^{\frac{2}{3}}}\right).$$

Theorem 1 (Ours)

Under Assumptions 1 and 3, there exists $\eta > 0$ such that LocalSGD ensures the following upper bound on $\frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E} \|\nabla f(\bar{\mathbf{x}}_t)\|_2^2$:

$$\mathcal{O}\left(\left(\frac{L}{\tau}+\rho\right)\frac{\Delta}{R}+\sqrt{\frac{L\Delta\sigma^2}{n\tau R}}+\left(\frac{L\Delta\zeta}{R}\right)^{\frac{2}{3}}+\frac{(L\Delta\sigma)^{\frac{2}{3}}}{\tau^{\frac{1}{3}}R^{\frac{2}{3}}}\right).$$

LocalSGD: convex speedup without UGS

Lemma 3 ([WPS20])

Under Assumption 1+, if all f_i are convex, $\mathbf{x}^* \in \arg\min_{\mathbf{x} \in \mathbb{R}^d} f(\mathbf{x})$, and $\|\bar{\mathbf{x}}_0 - \mathbf{x}^*\|_2 \leq D$, then there exists $\eta > 0$ such that LocalSGD ensures the following upper bound on $\frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E}\left[f\left(\bar{\mathbf{x}}_t\right)\right] - f^*$:

$$\mathcal{O}\left(\frac{LD^2}{\tau R} + \frac{\sigma D}{\sqrt{n\tau R}} + \left(\frac{L\overline{\zeta}^2 D^4}{R^2}\right)^{\frac{1}{3}} + \left(\frac{L\sigma^2 D^4}{\tau R^2}\right)^{\frac{1}{3}}\right).$$

LocalSGD: convex speedup without UGS

Lemma 3 ([WPS20])

Under Assumption 1+, if all f_i are convex, $\mathbf{x}^* \in \arg\min_{\mathbf{x} \in \mathbb{R}^d} f(\mathbf{x})$, and $\|\bar{\mathbf{x}}_0 - \mathbf{x}^*\|_2 \leq D$, then there exists $\eta > 0$ such that LocalSGD ensures the following upper bound on $\frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E}\left[f\left(\bar{\mathbf{x}}_t\right)\right] - f^*$:

$$\mathcal{O}\left(\frac{LD^2}{\tau R} + \frac{\sigma D}{\sqrt{n\tau R}} + \left(\frac{L\overline{\zeta}^2 D^4}{R^2}\right)^{\frac{1}{3}} + \left(\frac{L\sigma^2 D^4}{\tau R^2}\right)^{\frac{1}{3}}\right).$$

Theorem 2 (Ours)

Under Assumption 1, · · ·

$$\mathcal{O}\left(\frac{LD^2}{\tau R} + \frac{\sigma D}{\sqrt{n\tau R}} + \left(\frac{L\zeta^2 D^4}{R^2}\right)^{\frac{1}{3}} + \left(\frac{L\sigma^2 D^4}{\tau R^2}\right)^{\frac{1}{3}}\right).$$

LocalSGD: improved conditioning from UHS & LCH

Theorem 3 (Ours)

Under Assumptions 1, 2+ and 4, there exists $\eta > 0$ such that LocalSGD ensures the following upper bound on $\frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E} \|\nabla f(\bar{\mathbf{x}}_t)\|_2^2$:

$$\mathcal{O}\!\left(\frac{L\Delta}{R} + \sqrt{\frac{L\Delta\sigma^2}{n\tau R}} + \left(\frac{\overline{\delta}\Delta\zeta}{R}\right)^{\frac{2}{3}} + \frac{(L\Delta\sigma)^{\frac{2}{3}}}{\tau^{\frac{1}{3}}R^{\frac{2}{3}}} + \left(\frac{\mathcal{M}^2\Delta^4\zeta^4}{R^4}\right)^{\frac{1}{5}}\right).$$

SCAFFOLD: existing analyses

Lemma 4 ([Kar+20])

Suppose in Line 14 of Algorithm 1, a different global stepsize η_g can be used when aggregating the updates. There exists $\eta_g \geq \eta > 0$ such that SCAFFOLD ensures the following upper bound on $\frac{1}{R} \sum_{r=0}^{R-1} \mathbb{E} \|\nabla f(\bar{\mathbf{x}}_{2r\tau})\|_2^2$:

$$\mathcal{O}\left(\frac{L\Delta}{R} + \sqrt{\frac{L\Delta\sigma^2}{n\tau R}}\right).$$

SCAFFOLD: existing analyses

Lemma 4 ([Kar+20])

Suppose in Line 14 of Algorithm 1, a different global stepsize η_g can be used when aggregating the updates. There exists $\eta_g \geq \eta > 0$ such that SCAFFOLD ensures the following upper bound on $\frac{1}{R} \sum_{r=0}^{R-1} \mathbb{E} \|\nabla f(\bar{\mathbf{x}}_{2r\tau})\|_2^2$:

$$\mathcal{O}\left(\frac{L\Delta}{R} + \sqrt{\frac{L\Delta\sigma^2}{n\tau R}}\right).$$

Lemma 5 ([Kar+20])

Suppose $\hat{\mathbf{g}}_{(r\tau)}^i = \nabla f_i(\bar{\mathbf{x}}_{2r\tau})$ in Line 6 of Algorithm 1. Under Assumptions 2+ and 3, if all f_i are quadratic, then there exists $\eta > 0$ such that SCAFFOLD ensures the following upper bound on $\frac{2}{T} \sum_{r=0}^{R-1} \sum_{k=0}^{\tau-1} \mathbb{E} \|\nabla f(\bar{\mathbf{x}}_{2r\tau+\tau+k})\|_2^2$:

$$\mathcal{O}\left(\left(\frac{L}{\tau} + \overline{\delta} + \rho\right) \frac{\varDelta}{R} + \sqrt{\frac{L \varDelta \sigma^2}{n\tau R}}\right).$$

SCAFFOLD: speedup without quadratic/UHS

Theorem 4 (Ours)

Under Assumptions 2 and 3, there exists $\eta > 0$ such that SCAFFOLD ensures the following upper bound on $\frac{2}{T} \sum_{r=0}^{R-1} \sum_{k=0}^{\tau-1} \mathbb{E} \|\nabla f(\bar{\mathbf{x}}_{2r\tau+\tau+k})\|_2^2$:

$$\mathcal{O}\left(\left(\frac{L}{\tau} + \sqrt{L\delta} + \rho\right) \frac{\Delta}{R} + \sqrt{\frac{L\Delta\sigma^2}{n\tau R}} + \frac{(L\Delta\sigma)^{\frac{2}{3}}}{\tau^{\frac{1}{3}}R^{\frac{2}{3}}}\right).$$

SCAFFOLD: speedup without quadratic/UHS

Theorem 4 (Ours)

Under Assumptions 2 and 3, there exists $\eta > 0$ such that SCAFFOLD ensures the following upper bound on $\frac{2}{T} \sum_{r=0}^{R-1} \sum_{k=0}^{\tau-1} \mathbb{E} \|\nabla f(\bar{\mathbf{x}}_{2r\tau+\tau+k})\|_2^2$:

$$\mathcal{O}\left(\left(\frac{L}{\tau} + \sqrt{L\delta} + \rho\right) \frac{\Delta}{R} + \sqrt{\frac{L\Delta\sigma^2}{n\tau R}} + \frac{(L\Delta\sigma)^{\frac{2}{3}}}{\tau^{\frac{1}{3}}R^{\frac{2}{3}}}\right).$$

Theorem 5 (Ours)

Under Assumptions 2 to 4 with $\mathcal{M}=0$, there exists $\eta>0$ s.t. SCAFFOLD ensures the following upper bound on $\frac{2}{T}\sum_{r=0}^{R-1}\sum_{k=0}^{\tau-1}\mathbb{E}\left\|\nabla f(\bar{\mathbf{x}}_{2r\tau+\tau+k})\right\|_2^2$:

$$\mathcal{O}\left(\left(\frac{L}{\tau} + \sqrt{\frac{\overline{\delta}}{\delta}}\delta + \rho\right)\frac{\Delta}{R} + \sqrt{\frac{L\Delta\sigma^2}{n\tau R}} + \frac{(\overline{\delta}\Delta\sigma)^{\frac{2}{3}}}{\tau^{\frac{1}{3}}R^{\frac{2}{3}}}\right).$$

References

- [Kar+20] Sai Praneeth Karimireddy et al. "Scaffold: Stochastic controlled averaging for federated learning". In: *International Conference* on Machine Learning. PMLR. 2020, pp. 5132–5143.
- [Kol+20] Anastasia Koloskova et al. "A unified theory of decentralized sgd with changing topology and local updates". In: *International Conference on Machine Learning*. PMLR. 2020, pp. 5381–5393.
- [WPS20] Blake E Woodworth, Kumar Kshitij Patel, and Nati Srebro.
 "Minibatch vs local sgd for heterogeneous distributed learning".
 In: Advances in Neural Information Processing Systems 33 (2020), pp. 6281–6292.