Algorithms for Linear Equations with Min and Max Operators
Under (Absolutely) Halting Condition

Krishnendu Chatterjee
IST Austria
Klosterneuburg, Austria
kchatterjee@ist.ac.at

Raimundo Saona
London School of Economics
London, United Kingdom
raimundo.saona@gmail.com

Abstract

We consider linear equations with min and max operators (LEMMs)
that contains many subproblems ranging from optimization, games,
to model checking. Recently, Chatterjee et al. [4] give a system-
atic study of the complexity of different subclasses. Three key
subclasses—(i) halting branching process, (ii) absolutely halting
LEMMs, and (iii) halting LEMMs—are identified as being in UP N
coUP while generalizing stochastic games. In this work, we study
the classic algorithms of Policy Iteration (PI) and Value Iteration (VI)
for these general subclasses.

First, we simplify the problem hierarchy by showing the equiv-
alence between halting branching process and stochastic games.
Then, we show that PI diverges for absolutely halting LEMMs, while
VI converges following from a new analysis based on spectral gap.
Applying our new analysis back to well-studied subproblems of
stochastic games yields surprising improvements: we refine the
long-standing analyses of VI and PI for reachability objectives using
the spectral gap, and improve the best-known strongly polynomial
rate of PI for discounted-sum objectives (with fixed discount factor)
by a logarithmic factor. Finally, we show that neither PI nor VI
converges for general halting LEMMs and, to this end, propose
variants of simple policy iteration that ensure convergence across
all subclasses.
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1 Introduction

Optimization problem. Optimization is in the core of many prob-
lems in formal methods, programming languages, logics, and ar-
tificial intelligence. Prominent examples include model checking,
probabilistic program analysis, constraint programming, reinforce-
ment learning, evolutionary games, to name a few. In this work,
we are interested in the optimization problem of solving for x =
[x1,...,x,]7 € R" in the system of Linear Equations with Min and
Max operators (LEMM) given by (Smin, Smaxs Safts 1, N, q, b):

X;i = min xj, i € Smin,
1eN(i)
X; = max Xxj, i € Smax »
v J € Omax (1)
Xk = QX + by, k € Sar,

where the following conditions are satisfied: (a) Smin, Smax, and
Sa are disjoint sets such that Spin U Smax U St = [n],} (b) @ ©
N (i) € [n] for i € Smin U Smax, (¢) qx € R” for k € Sug, and (d)
b=[by, - ,b,]" € R" such that b; = 0 for i € Spin U Spax.

It is known from the literautre [4] that Problem (1) covers many
applications, such as linear program with boolean variables [17],
verifying neural networks [9], constraint satisfaction problems [2],
and evolutionary in ecosystems [19].

Restrictive conditions. Given the generality and hardness of the
problem, researchers focus on several natural subclasses and let us
first recall the restrictive conditions: (C1) the operators are halting;
(C1+) the operators are absolutely halting; (C2) the coefficients
are non-negative; (C3) the rows sum up to one; and (C4) there is
only min operator or only max operator. Various subsets of condi-
tions yield various subproblems. For instance, Condition C2 models
branching processes; Conditions C2 and C3 together model prob-
abilistic transitions; and Condition C1 or Condition C1+ implies
that the underlying state transitions satisfies stability or absolute
stability.

Well-studied subproblems. A few well-studied problems corre-
spond to different subclasses: with min and max operators, under
Conditions C2 and C3 we obtain (two-player turn-based zero-sum)
stochastic games with reachability objectives; the seminal paper [7]
shows that the halting condition C1 can be further assumed without
loss of generality, which leads to halting stochastic games (a.k.a.

Denote [k] :={1,2,--- ,k},forallk € Z;.
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simple stochastic games or SSGs); while when there is only one
type of opearator—that is, under Condition C4—the stochastic game
is reduced to Markov decision process (MDP) with reachability ob-
jectives.

Key open subproblems. Recently, Chatterjee et al. [4] give a sys-
tematic study of the computational complexities of the LEMM sub-
problems under all subsets of conditions. All the subproblems are
classified into the NP-complete category, the UP N coUP (while no
easier than SSGs) category, and the category solvable in polynomial
time. In this paper, we study algorithms for LEMM subproblems,
and in particular, for the ones in the second category—UP N coUP—
because from an algorithmic perspective, the second UP N coUP
category represents the most exciting challenges. The subproblems
in this category are not NP-hard (unless NP = coNP), yet general-
ize the fundamental and difficult problem of SSGs, for which the
existence of polynomial time algorithms is a major open problem

in the field.

Policy Iteration and Value Iteration. Since the key open subprob-
lems are natural generalization of SSGs, the classic algorithms for
SSGs are the natural candidates for these subproblems. The two
most fundamental algorithms for SSGs are Policy Iteration (PI) and
Value Iteration (V1) [1, 6]: Pl iteratively updates the policy of one
player based on the best response of the other player; VI itera-
tively updates the value vector by propagating the last value vector
through the games. In this work, we consider natural extensions of
both PI and VI to the framework of LEMMs, and investigate their
convergence behaviors for the different general subclasses.

Related work on the runtime analyses of Pl and V1. It is practically
observed that both Pl and VI converge fast for most instances in SSGs
and MDPs, but both algorithms take exponential time in the worst
case. The special class of discounted-sum objectives is relatively
well understood in theory: when the discount factor y is bounded
away from 1, VI converges in polynomial time [11], and Pl converges
in strongly polynomial time due to the seminal result of [8, 20].
However, for the (more general) halting MDPs and stochastic games
with reachability objectives, the runtime analyses are considerably
more elusive. The only known upper bound for Pl in general is the
exponential bound from enumerating all the possible policies. The
currently best upper bound for VI is a convergence rate of o( 11—);),2
where (1 —j) describes the guaranteed probability of reaching sink
states after every n steps. Therefore, the following problems remain
open:

o Whether the dependence on (1 — ) in the current analysis of VI
for MDPs and SSGs can be improved?

o whether the (strongly) polynomial runtime results for discounted-
sum objectives can be generalized to broader classes with reach-
ability objectives?

o Whether the Pl and VI still converge for various LEMM general-
izations?

Related work on Markov chain and spectral gap. Markov chain
is the fundamental model underpinning the state transitions in
a probabilistic system. Its mixing time measures how quickly the
system evolves into a steady state distribution. An important tool

?In the é(~) notation, the polynomial terms are obsolete.

from spectral analysis is the spectral gap—the difference between
the transition matrix’s two largest eigenvalues®—that can be used
to control the mixing time [10]. However, to our knowledge, this
concept of spectral gap has never been generalized to the prob-
lems of MDPs and stochastic games with reachability objectives.
Therefore, the following question remain open:

e Whether one can use the tool from spectral analysis to explore
the connection between spectral gap and the convergence of VI
and P1 for MDPs, SSGs, or even halting LEMMs?

Our contributions. In this work, we give a systematic algorithmic
study on the convergence of PI and VI for various LEMM subprob-
lems in UP N coUP. Moreover, when applying our new approach
back to the fundamental problem of SSGs, we have (surprisingly)
improved the long-standing running time analyses of VI and PI,
which is a key result of this work. In detail, our contributions are
listed as follows:

(1) We show the equivalence between halting branching process
and SSG by a linear reduction (Theorem 1).

(2) We consider absolutely halting LEMMs and show that Pl diverges
yet VI converges (Theorem 2). The key technique of our VI analysis
is a new preconditioning that connects the convergence rate and
the spectral gap (Lemmas 2 and 3).

(3) We consider our new VI analysis approach for the fundamental
problems of MDPs and stochastic games:

(3a) For halting MDPs and stochastic games with reachability
objectives, by connecting the convergence rates of VI and PI with
spectral gap, we refine the long-standing bound of VI (Corollary 3)
and obtain a new bound of PI (Theorem 4);

(3b) For stochastic games with discounted-sum objectives, we
improve the best-known strongly polynomial time bound of PI by
a logarithmic factor (Corollary 5).

(4) We consider general halting LEMMs and show that neither PI
nor VI converges. To this end, we revisit SPI and RandSPI and prove
their convergence for the general class (Theorem 6).

2 Preliminaries

LEMM and its decision problem. We refer to Eq. (1) as the LEMM
with (Smin, Smax, Saft> 1, N, q, b). If x € R” satisfies Eq. (1), we say
that x is a (feasible) solution to the LEMM. We define the LEMM
decision problem as follows: given an LEMM with (Smin, Smax> Saffs
n, N, q,b), a threshold § € R, and an index i € [n], decide whether
there exists a feasible solution x of the given LEMM, such that
x; < ﬂ

Vectors, matrices and sets. Let e; = [8;1,...,6in]", i € [n],
where §;; is 1if i = j and 0 otherwise. Let 0y € R* (or 1; € R¥)
denote the vector where every element in the vector equals 0 (or
1). For any vector v € R", let diag(v) € R™*" denote the diagonal
matrix with v on its diagonal. Let Oy, xx, € R¥1>k2 denote the matrix
where every element equals 0. Let I € R¥*¥ denote the identity
matrix. The subscripts k, k;, and k, might be obsolete when they are
clear from the context. For any matrix Q € R"*", let p(Q) denote
its spectral radius; let det(-) denote its determinant; let |Q| € R™*"
denote the matrix where each element is the absolute value of the

3The largest eigenvalue in a Markov chain is trivially 1. Let y be the second largest
eigenvalue, and the spectral gap is given by (1 — y).
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Figure 1: Three key categories in the complexity class UP N coUP while no easier than SSGs: the subproblems, the complexity of checking the
conditions, and the convergence of P, VI and SP1 algorithms. The rows of the subproblems are ordered by decreasing generality (and thus difficulty)
from top to bottom. The subproblems in the same row are linearly equivalent to each other. The new results from this paper are in bold and red.

corresponding element in Q; and let Q_;; € R("=DX("~1 denote
the matrix formed from Q by deleting its ith row and jth column.
For any finite set, let |-| denote the number of elements in the set.

Notations. Consider the LEMM with (Smin, Smax> Satt> 1 N, q,
b). Let ny = |Smin| and nz = [Smax|- Let m = Xcs . usma IN(D]-
Without loss of generality, we assume Syin = {1, -+, n1} and Spay =
{ny +1,---,ny + ny}, and then, we denote

Qumin = {[et’p s ,e(nl]T| ;e N(i) fori e Smin} s
Quax = {[efn1+15 te ;et’nﬁnz]Tl [j € N(]) forj e Smax}s
Qaﬂ = [qn1+n2+1, cees qn]T .

Qmin

Q= { Qmax

Qaff

and let conv(Q) denote the convex hull of Q. When all input num-

bers are rational, for all k € S,g, let di € Z>1 be the least common
multiple of q and by (that is, dixqr € Z" and di by € Z). Denote

Let

Qmin € Qmin and Qmax € Qmax} 5

D = max di and ¢" = 2~ ("D p~n, (2)
keS,q
We say that x € R" is an ¢"-accurate solution, if there exists a
solution x* such that ||x — x*||e < €*.

2.1 Restrictive conditions

The LEMM decision problem is NP-complete in general, while to
obtain computationally tractable problem classes several restrictive
conditions are introduced in the literature [4, 7, 14].

ConbpitioN C1 (HALTING). For all Q € conv(Q), we have that
limk—»oo Qk =0Op.

ConpITION C1+ (ABSOLUTELY HALTING). For all Q € Q, we have
thatlimk_,oo|Q|k =0,.

ConDITION C2 (NON-NEGATIVITY). For all k € S,, we have that
qx >0 and by > 0.4

ConDITION C3 (SuM UPTO ONE). For all k € S,¢, we have that
qrk =0,br >0, anqul +br < 1.

ConDITION C4 (MAX-ONLY OR MIN-ONLY). Either Sy, = @ or
Smax = D.

“4Throughout this paper, all equalities, inequalities, and min/max operations involving
two vectors, or a vector and a real number, are understood element-wise; that is, they
are applied separately to each corresponding coordinate.

We use the following subset notation for the LEMM decision
problem under various subsets of the conditions. For instance, “the
LEMM decision problem under {C1,C2}” means “the LEMM deci-
sion problem under Conditions C1 and C2”.

We also remark that, while Condition C1+ is in general stronger
than Condition C1, under Condition C2 they become trivially equiv-
alent. In other words, the set of conditions {C1+,C2} is equivalent
to the set of conditions {C1,C2}.

Discussion about related problem classes. The conditions consid-
ered above are natural in relevant literature. The LEMM under
{C2,C3,C4} corresponds to Markov decision process (MDP) with
reachability objectives; the LEMM under {C2,C3} corresponds to
(two-player turn-based zero-sum) stochastic games with reachabil-
ity objectives; the LEMM under {C2} corresponds to branching
process. In the contexts of MDP, stochastic games, and branching
process, the Condition C1 is known as halting condition characteriz-
ing the stability of the underlying state transitions. For instance, the
halting stochastic games (a.k.a. simple stochastic games or SSGs)
correspond to the LEMM under {C1,C2,C3}.

2.2 Computational complexity results from
literature

Complexity of the LEMM decision problem. The MDP (or the
LEMM under {C2,C3,C4}) is known to be solvable in polynomial
time [14]. The stochastic games (or the LEMM under {C2,C3})
are known in the complexity class of UP N coUP [3, 7], yet the
existence of a polynomial-time algorithm remains a major open
problem. Condon [7] shows that stochastic games are polynomially
equivalent to SSGs (or the LEMM under {C1,C2,C3}).

More recently, Chatterjee et al. [4] give a systematic study of the
computational complexities under different subsets of conditions.
In detail, they show that the LEMM under {C2,C4} or {C3,C4}
is NP-hard; while the halting LEMM (that is, under {C1}) has a
unique solution and belongs to the complexity class UP N coUP;
and moreover, the LEMM under {C1,C3}, {C1,C4}, or {C1,C3,C4}
is no easier than the halting LEMM. In particular, they indentify
all the subproblems between the halting LEMMs and the SSGs as
belonging to the complexity class UP N UP yet no easier than SSGs.

Complexity of checking the conditions. The complexity of check-
ing the subsets of conditions has also been studied in the litera-
ture [4, 14]. While Conditions C2 to C3 can be easily checked in
linear time, [4] further show that Condition C1+ can be checked in
polynomial time yet checking Condition C1 is coNP-hard. Together



with the complexity of the LEMM decision problem, this implies
that the language of “LEMM decision problems under Condition C1+
with ‘yes’ answers” is in UP N coUP.

We summarize the complexity results known from the literature.

PROPOSITION 1 ([4, 7, 14]). The following assertions hold:

e The LEMM decision problem under {C2,C4} or {C3,C4} is NP-
complete.

e The LEMM under {C1} has a unique solution, and thus, its
associated decision problem is in UP N coUP.

e The LEMM under {C2,C3,C4} or {C1,C2,C4} is polynomially
solvable, and thus, their associated decision problems are in
PTIME.

e The LEMMs under {C1} and the LEMMs under {C1,C3,C4} are
linearly equivalent.

e The LEMMs under {C1,C2,C3}, the LEMMs under {C2,C3}, and
the SSGs are linearly equivalent.

e The LEMMs under {C1,C2,C3,C4}, the LEMMs under {C2,C3,C4},
and the MDPs with reachability objectives are linearly equiva-
lent.

o Checking Condition C1 is coNP-complete;® checking Condi-
tion C1+ is in PTIME; and checking Conditions C2 to C4 can be
done in linear time.

REMARK 1. In Proposition 1, we know from the literature that
all (except two) of the LEMM subproblems are classified precisely into
three complexity categories: NP-complete, UP N coUP (while no easier
than SSGs), and PTIME. In detail:

o NP-complete: {C2,C4}, {C3,C4}, {C2}, {C3}, {C4}, and 2;

e UP N coUP (while no easier than SSGs): {C1}, {C1,C3}, {C1,C4},

{C1,C3,C4}, {C1+}, {C1+,C3},{C1,C2},{C2,C3}, and {C1,C2,C3};

e PTIME: {C1,C2,C3,C4}, {C2,C3,C4}, and {C1,C2,C4}.

There are two remaining subproblems {C1+,C4} and {C1+,C3,C4},
which we do not know from the literature whether they are easier or
harder than SSGs. Therefore, these may belong to the UP N coUP cate-
gory or the PTIME category, and their memberships are not entirely
clear from the results in the literature.

Proposition 1 further classifies the nine of the LEMM subproblems
in UP N coUP (while no easier than SSGs) into three key subclasses:

o Halting LEMMs: the first four LEMM subproblems ({C1},{C1,C3},
{C1,C4}, and {C1,C3,C4}) in the top row are linearly equivalent;

o Absolutely halting LEMMs: the three LEMM subproblems {C1+},
{C1+,C3}, and {C1,C2} are no harder than the first four subprob-
lems in the top row while no easier than the last two subproblems
in the bottom row; and

o SSGs: the last two LEMM subproblems ({C2,C3} and {C1,C2,C3})
from the bottom row are linearly equivalent to SSGs.

For the algorithmic study in this work, we focus on developing
algorithms for the subproblems in the (arguably most interesting)
complexity class of UP N coUP (while no easier than SSGs). Moreover,
we also try to identify the exact memberships for the two remaining
subproblems {C1+,C4} and {C1+,C3,C4}.

5In the original paper of [4], checking Condition C1 is proven to be coNP-hard. This
complexity result can indeed be strengthened to coNP-completeness. The detailed
proof can be found in Section A.

2.3 Classic algorithms: policy iteration and
value iteration

As discussed above, [4] highlights a few new LEMM subclasses in
UP N coUP while no easier than SSGs. In this paper, we study the
algorithms for these subclasses. In this section, we formalize the
classic algorithms of Policy Iteration (PI) and Value Iteration (VI),
and then review their classic analyses in the literature under the
setting of SSGs.

Policy Iteration. Given an LEMM with (Swin, Smax, Saff> 7, N, q,
b), for every max policy Qmax € Qmax, We define its value estimate
Xmax(Qmax) € R” as the (unique) solution of the following system
of equations:

X; = min xj, 1<i<n,
1eN(i)
[xn1+1; te ,xn1+n2]T = QmaxX; (3)

xk:q2x+bk, ni+ny<k<n.

Based on this value estimate, the max policy extraction 7yax : R” —
Qnay satisfies the following condition: for every x € R”, let i,y (X) €
Qmax such that

Tmax(X) - X = , max Qr,nax ‘X,

fnax € Qmax
The pseudocode of Policy Iteration algorithm updating max poli-
cies (PImax) is given in Algorithm 1. Starting from an initial max
policy Q,(I?zx, Plmax iteratively estimates the value and extracts the
next max policy.

Algorithm 1 Policy Iteration updating max policies PImax(Q,(,?;X

Require: 0% € Quax
fort=1,2,--- do

X = x (QUSY)

x(ria)x = Tmax (E(Z_l))

end for

Similarly, we can also define value estimate Xmin: Qmin — R”,
min policy extraction /yin : R" — Quin, and have a Policy Iteration
algorithm updating min policies (PImin).

It should be noted, however, that greedily updating both min
and max policies simultaneously does not converge for SSGs [6], so
we only consider the policy iteration updating max or min policies,
but not both.

Value Iteration. Given an LEMM with (Swin, Smax, Safts 1. N, q,
b), define the value iteration operator v: R" — R" as follows: for
any x € R”, let X’ = v(x) such that

x; = min x, 1<i<ng,
1eN(i)

x}zmax X1, ny <j<n;+n;y, (4
leN(j)

’ T
X, = q X + by, ni+n;<k<n.

The pseudocode of value iteration algorithm (VI) is given in Al-
gorithm 2. Starting from an initial value vector x(?, VI iteratively
computes the next value vector by the v operator.

Suppose all input numbers are rationals. Let us recall the &*
defined in Eq. (2). As shown in Proposition 2, while VI itself is



Algorithm 2 Value Iteration VI(x(*)

Require: x(® e R”
fort=1,2,--- do
x) = p(x(t-D)

end for

an approximation algorithm, the exact solution can be obtained
in polynomial time from any &*-accurate solution (provided the
halting condition holds). Therefore, the analyses of VI algorithm
for LEMMs under halting condition focus on the complexity of
reaching an ¢*-accurate solution.

ProPOSITION 2. Consider an LEMM with (Syin, Smax> Saff> 1. N,
q, b) under Condition C1. Let x* be its unique solution. Furthermore,
suppose all input numbers are rationals. Let x € R" be an €*-accurate
solution, and let Q € Q such that Qx + b = v(x). Then,

x=(1-Q)'b.
Proor. By Eq. (2), let
r= diag(L R dn1+n2+1: T adn) e Z™™

We have I'b € Z",and I'Q € Z™*" for all Q € Q.
Let Q* € Q such that x* = Q*x*+b. Under Condition C1, (I-Q*)

is invertible, and we have
M

F=(I-QH) b =[II-Q9H]'Ib) = ————
X = (1-Q) b= [M(1- Q)] (1) = s
where M is the adjugate matrix of I'(I — Q*). In view of I'b € Z"
and I'Q* € Z™", we have M € Z™", and then

det(I'(1 - Q*))x" = M(I'b) € Z".

(I'b),

Moreover, we have
det(I'(I-Q*)) < D%l det(1-Q*) < D%l (o (1-Q*))" < DISarl",

where the last inequality follows from Condition C1. Therefore, for
all1<i,j<n,

either x; = xj or [x] — x}| 2 > (2D)™".

1
— det(I'(1- Q%))
Since ||x —x*||o < €, we have forall 1 < i, j < n,if x; > x;, then
xizxi—e 2xj—€e 2x; -2 =x; - (2D)7",
and hence, x] > xj. Therefore, the neighbor choices of Q in v(x) =

Qx + b are made correctly, and x* = Qx* + b = (I - Q)" !b. O

Now, we cite the classic analyses of Pl and VI algorithms for SSGs
in the literature.

PROPOSITION 3 (ALGORITHM ANALYSES FOR SSGs [5, 6]). Consider

an LEMM with (Suin, Smax, Saff> 1, N, q, b) under conditions {C1,C2,C3}.

Let x* be its unique solution.

(1) Let QI(,;QX € Qmax and Qx(r(l)i)n € Qmuin be any given policies.
The following assertions hold for the iterates (§<t))tezzo in
PImax(Q,(nOa)x) and the iterates (§(t))tgzzo in PImin(Qr(r?i)n) :

(a) There existst < Ijcs,  IN(j)| =1 such thatx") = x*;

(b) There existst <Tljes,, IN(j)| =1 such thatx¥) = x*.

'min

(2) Let
1
7+ max {IQ--- Q|2

Let x(© € R™ be any given point such that x®) < x*. The fol-
lowing assertions hold for the iterates (E([))tezzo in VI(x(9):
(a) Forallk € Zs,,

0" e Q foralli [n]} <1. )

max (x} — xgk")) < 7" max (x} - xi((kfl)"))

ie[n] - i€[n] -

<< 7 max (x - x”);
ic[n] =

(b) Suppose all input numbers are rationals. There exists

1
t < ~
1-—

i

[nlog(2D) + log (2 m[a)i (x; - g(o))] +n (6)
i€|ln

such that x) is an ¢*-accurate solution.

Similar assertions hold for Vl(i(o)) iterates (i(t))tezzo with
—=(0) *
X =X

REMARK 2. Both Pl and VI algorithms converge for SSGs. We re-
mark that the convergence of VI is established for iterates from below
and from above. Specifically, after every n steps, VI achieves linear
convergence with a contraction factor y* € [0,1).

As a final remark, although Pl and VI algorithm perform well in
practice [14], they both run in exponential time in the worse case.® To
get any polynomial bound for SSGs requires a major breakthrough in
the field.

3 Equivalence Between LEMM Subclasses

In this section, we will show reductions between several LEMM
subclasses. Before preceeding with the reductions, we first state
a few equivalent characterization of Condition C1+, the proof of
which can be found, for instance, in [4, Lemma 9].

PROPOSITION 4. Given an LEMM with (Smin, Smax, Saft> s N, q,
b), the following conditions are equivalent:
Condition C1+ holds.
maxgeq 0(|Ql) < 1.
There exists v € R, such thatv > |Q|v + 1 forallQ € Q.
Forallc € R", there existsv(®) € RZ, such thatv(© > |Q|v(©) +
cforallQ € Q.

The following lemma uses Proposition 4 to show that under
Condition C1+ (or under Conditions C1 and C2), the Condition C3
can be assumed without loss of generality. The main idea of the
reduction is to use the vector v(®) from Proposition 4 to contract
the row sum.

LEMMA 1. Any LEMM under {C1+} can be reduced to an LEMM
under {C1+,C3} of the same size; any LEMM under {C1,C2} can be
reduced to an LEMM under {C1,C2,C3} of the same size.

Proor. Consider an LEMM given by (Smin, Smaxs Saffs 1 N, q, b)
that satisfies Conditions C1 and C2. By Proposition 4, there exists
,on] € RY such that

v=Qv+bforall Q € Q (7)

v=log,

®In the analysis of VI, Eq. (6) is exponential for j close to 1.



and moreover, such a v can be found in polynomial time by solving
the linear program. Let A = [diag(v)]™!. Then, x € R" is the
solution of the original LEMM if and only if y = Ax is the solution
of the new LEMM given by (Smin, Smax. Saff> 1, N, q’, Ab), where q;c =
UI;IAflqk, k € Sag.

Moreover, for all k € S,¢, we have

(q) 1+ (Ab) =0 " (qf A" 1+ by) .

Solzl(q-krv+bk) Svglok =1,

where the last inequality follows from Eq. (7). Hence, the new
LEMM satisfies Condition C3. Hence, we have reduced the original
LEMM under {C1,C2} to an LEMM (of the same size) satisfying
{C1,C2,C3}.

Following similar steps, any LEMM under {C1+} can also be
reduced to an LEMM (of the same size) satisfying {C1+,C3}. O

Now, we are able to obtain the equivalence results between sub-
classes of LEMMs in Theorem 1. The detailed proof can be found
in Section B. The main proof steps of Item 1 of the theorem are to
assume “sum upto one” by Lemma 1, make both positive and nega-
tive copies for each variable, and rewrite the max operators as the
negative of min operator. The Item 2 of the theorem follows, again,
from Lemma 1 and the equivalence result from the literature [7].

THEOREM 1 (EQUIVALENCE BETWEEN LEMM SUBCLASSES). We
obtain the following equivalence:
(1) There is a linear reduction between the LEMM decision prob-
lems under {C1+}, {C1+,C3}, {C1+,C4}, and {C1+,C3,C4}.
(2) There is a linear reduction between the LEMM decision prob-
lems under {C1,C2}, {C2,C3}, and {C1,C2,C3}.

REMARK 3. From Item 1 in Theorem 1, we know that, for solving
LEMMs under Condition C1+, assuming Conditions C3 and C4 will not
make the problem easier. Therefore, we put the four linearly equivalent
LEMM subproblems {C1+}, {C1+,C3}, {C1+,C4}, and {C1+,C3,C4} in
the same row in Fig. 1.

From Item 2 in Theorem 1, we know that the LEMM under {C1,C2}
is equivalent to the LEMM under {C2,C3}, which implies the linear
equivalence between stochastic games and halting branching process.
Therefore, we put the three linearly equivalent LEMM subproblems
{C1,C2}, {C2,C3}, and {C1,C2,C3} in the same row in Fig. 1.

It should also be noted that our reductions are of linear size, which
implies any subexponential-time complexity result for SSGs (for in-
stance, [12]) holds for the class of LEMMs under {C1,C2} as well.

The equivalence results established in Theorem 1 have simplified
the complexity hierarchy of the LEMM decision problems in the
original study of [4]. This simplification leads to a clearer structure
containing only two new subclasses: the absolutely halting LEMMs
under {C1+} and the halting LEMMs under {C1}. These two key
subclasses are known to generalize SSGs yet still belong to the
complexity class UP N coUP.

4 Algorithms for LEMM Subclasses

In Section 4.1 and Section 4.2, we study the algorithms for the
absolutely halting LEMMs and the halting LEMMs, respectively.

4.1 Algorithms for Absolutely Halting LEMMs

In this section, we study algorithms for LEMMs under Condi-
tion C1+. We first construct a counterexample showing that the
Pl algorithm may diverge for this class due to the negative coef-
ficients. Then, we analyse the convergence of VI algorithm via a
new preconditioning technique, connecting the convergence rate
to spectral gap. Finally, we apply our new VI analysis approach
on the fundamental subproblems of SSGs (and MDPs). It leads to
surprising improvements of the long-standing runtime analyses of
VI and PI, which is a key result of this work.

ExaMPLE 1 (DIVERGENCE OF Pl). Consider the LEMM given by:
x1 = max{xy, x5},
Xy = max{xs, X7},
X3 = max{xs, xo},
x4 = —0.2x2 + 0.2x3 + 0.25,
x5 = 0.3x1 — 0.6x3 + 0.25,
X6 = —0.5x1 + 0.25,
X7 = 0.3X1 + 0.1XZ - 0.3X3 + 025,
xg = —0.2x7 + 0.4x, + 0.3,

x9 = —0.7x5 + 0.3x3 + 0.3.
The above LEMM satisfies Conditions C1+, C3 and C4. Consider the
algorithm PImax(Qr(,?gx) with

0
x(nzzx = [ey, €, es]T,

then
o = Timax (Xinax (QSo)) = [es, €7, €517,
2 = Timax (Xinax (Q)) = [e4, €7, €017,
o = Timax (Xinax (Q)) = [e5, €7, €017,
o = Timax (Xina (QUok)) = [es, €7, 5],
o = Timax (Xinax (Qe)) = [e4, €7, €517,
o = Timax (Xinax (Q)) = [e4, €6, €517,

The above algorithm enters a loop.

Next, we show that the VI algorithm still converges under Con-
dition C1+. For the SSG subclass, the classic analysis of VI assumes
starting from a lower bound (or an upper bound) of the solution,
and then shows that the sequence monotonically increases (or
decreases) and converges to the solution, as stated in Item 2 in
Proposition 3. For LEMMs under Condition C1+, however, without
non-negativity (Condition C2), the VI iterates are not necessarily
monotonic. Even worse, the classic halting conditioning y for SSGs
(cf. Eq. (5)) is not well-defined for the generalized LEMMs, as shown
in the following example:

EXAMPLE 2 (ILL-DEFINED CLASSIC CONDITIONING). Consider for
instance Q = {Q} with the matrix

0.5 0.7
Q= [ 0 0.7]
whose spectral radius 0(Q) = 0.7 < 1, yet we have 7* = ||Q*1]|c =
1.49 > 1.



Hence, we need a different convergence analysis for VI algorithm
under Condition C1+. To this end, we propose a new analysis of VI
with a novel preconditioning technique.

Preconditioning. We define a new halting conditioning
£ ma <1, 9
£ maxe(IQ) ©)

and refer to (1 — y) as spectral gap.
For any real number a € (0, 1), let

Y Ey+a(i-y e ). (10)
Moreover, let v(®) € RZ; such that
v(® 2 inf {v e RY| y@v > |Qlv+1, forallQ e Q}, (11)
which is well defined in view of Proposition 4. Then, let
A 2 [diag(v(@)] . (12)

The following lemma shows some useful properties of the new
conditionings we introduced, as well as their relations to the classic
SSG conditioning y (cf. Eq. (5)).

LEMMA 2. Consider an LEMM with (Smin, Smax, Saffs 1, N, q, b)
under Condition C1+. Let a € (0, 1). The following properties hold:

(1) 1=y =(1-a)(1-y);

2) [INQA) Ml <y, forall Q € Q;

@) A9 T-QT AN < i forallQ € Q;

(4) Under Condition C2, we havey < ¥;

(5) Suppose all input numbers are rationals. Under Conditions C2

and C3, we have |v\® || < a™"D"n(y® + 1)"L,

Proor. (1) 1—y@ =1—y—a(1-y)=(1-a)(1-y).
(2) For all Q € Q, we have for alli € [n],

Z(A<“>|Q| AD) = @ Z|Q|” o)
i

(a> (Y(a) (Dl)) _

and therefore, ||A("‘)Q(A("‘))71||oo <y@,
(3) For all Q € Q, we have

A - A7, < 2 At A,
k=0

= A < 3 Ao L,
k=0 k=0
o . l

< Z(y( ))k = = y(a) .

o~
Il

0

(4) Under Condition C2, by the definitions of y and y, we have
the following inequalities

1
y = max 0(Q) < max Q"% <7

(5) Under Condition C2, by the definition of v(@ | there exists
Q@ € Q@ such that

Y@@ — Q@@ g

Then, we have
vl = [|(r 1= QN
-1
= |det(y1- Q) M| (13)

< |det(y(”‘)I—Q("‘))|_1 - max |M( )|

1<i,j<n

where M@ = (Ml.(ja)) € R™" denote the adjugate matrix of (y("‘) I-
Q).
Under Condition C3, we have forall 1 <i,j <n,
M) = |det (y91-Q ) )| < (' + )" (19)
Moreover, we have
|det(y(“)l -

Q)| 2 a"det1- Q)| = a"D™".  (15)

Finally, the desired inequality follows from plugging Eqs. (14) and (15)
into Eq. (13). O

We are now ready to show a key lemma for our convergence
analysis of VI. In particular, with the new conditioning in Egs. (9)
to (12), we can show the contraction of value iteration operator in
one step under the A® -preconditioned norm, with which we can
establish the convergence result of VI starting from an arbitrary
point.

LEMMA 3 (ONE-STEP CONTRACTION OF v(+)). Consider an LEMM
with (Smin, Smax, Saff> 1, N, q, b) under Condition C1+. Let & € (0,1).
For allx,y € R",

1A @) = vl < ¥ A (x = y) | -

Proor. Forallx,y € R", let v(x) = Q™ x+band v(y)
b, where Q(X), Q<Y) € Q. Then, for all Q € Q, we have

QS()X <Qi.x,
Q](X)x > Qj X,

Construct the matrix Q™) € Q as follows: (i) take the rows corre-
sponding to min variables from QY; (ii) take the rows correspond-
ing to max variables from Q®); and (iii) take the remaining rows as
Q.. That is: Q(X’y> Q(y) for i € Spyin; QX Y) Q(X> for j € Spax;

and Q(X Y) = Q(X) Q](cyl) for k € S.
Then we have

A (v(x) —v(y)) = A9 (Q¥x+b) - (QVy +b))
=A@ (QWx—Wy) Y A@QEy (x_y)
> —[[AQ™Y) (x - y) |l
_ _||A(0!)Q(x,y) (A(a))*lA(a) (x =)o
2 —[|A@ QY (A®) M| A (x - y)|eo

= Q(y)y+

Q(y)y <Q,.y, foralli€ Sy, and
Qj!}f)y >Qj.y, forallj€ Spax.

)
> —r A (x - y)lle

where (*) follows from the construction of Q®¥) and (**) follows
from Item 2 in Lemma 2.
Similarly, we can show that for all x,y € R",

A () = o(y) <y IAY (x =)o



Therefore, we have
1A (0(x) = v(y)lleo < ¥ O NAD (x = ¥) o,

forall x,y € R". O

Finally, we conclude with the results for absolutely halting LEMMs
in the following theorem.

THEOREM 2 (ANALYSES FOR LEMM UNDER {C1+}). Consider an
LEMM with (Smins Smaxs Saft> 1, N, q, b) under Condition C1+. Let x*
be its unique solution.

(1) PImax or Plmin may not converge.

(2) Letx(®) € R" be any given point. The following assertions hold

for the iterates (x'V)),ez,, in VI(x(?):
(a) Forallt € Zso and for all « € (0,1), we have

IA@ (x® = x*) oo < @ A@ (& — %) |og
<... < (Y(Of))t”A(O!)(X(O) =X leo -

(b) Suppose all input numbers are rationals. There exists

1
) (@) (5 (0) _ o
t<aé%fl) @ [nlog(2D) +log(2)|A" (x ) || o)

+1log [Vl ] + 1,
such that x) is an &*-accurate solution.

Proor. (1) follows from the counterexample in Example 1.
(2) follows from Lemma 3. o

REMARK 4. On the one hand, Item 1 in Theorem 2 shows that the
classic Pl algorithm diverges for absolutely halting LEMMs. Compared
to Item 1 in Proposition 3, it also indicates that the absolutely halting
LEMM seems to be a different problem class from SSGs.

On the other hand, Item 2 shows the connection between the spec-
tral gap (1 — y) and the convergence rate of VI for absolutely halting
LEMM.s, significantly generalizing the convergence result from SSGs.
We also remark that it is well known in the context of Markov chains
that the spectral gap determines mixing time, but to our knowledge,
this relation has not been extended to the settings of MDPs or SSGs.

In Theorem 2, we obtain a new analysis of value iteration that
generalizes the convergence proof for SSGs (under {C1,C2,C3})
to absolutely halting LEMMs (under {C1+}). Next, we answer the
following natural question: if limited to the well-studied setting of
SSGs (or even MDPs), how is our new analysis compared to the
classic result of Proposition 3?

New analysis for stochastic games

In this section, we discuss our new algorithmic results in the con-
text of stochastic games (and eveh MDPs). First, we state our new
analysis of VI applied back to SSGs, and demonstrate how it refines
the existing analysis.

COROLLARY 3 (NEW VI ANALYSIS FOR SSGs). Consider an LEMM
Wwith (Smin, Smax> Saffs 1, N, q, b) under conditions {C1,C2,C3}. Let
x(© € [0,1]" be any given point and let (X(t))[gzzo be the iterates
in VI(x")). Suppose all input numbers are rationals. There exists

t= 0( log(zD))

n
I-y

such that x) is an &*-accurate solution. Thus, VI is a polynomial
time algorithm when y is bounded away from 1.

ProoF. This is implied by Item 2 in Theorem 2 and Item 5 in
Lemma 2. O

EXAMPLE 3 (y IMPROVES }). Foreveryn € Zq, let

6 1-6 0 0

0 1) 1-6 0 0
0 nxn
Q(n) = e R™",

o

0 0 ) 1-6
0 0 1)
We have

1-0(Q(n)) =1-46.

Moreover, we have

n@m»wmﬁﬁch“vaﬁ@wﬁL

k=0
n-k 1 _ S\k
( k)s (1-6)
k=0

=1-(1-96)",

n

and then,
1= Q)5 =1~ (1= (1-8)")h
=1-exp (% In(1-(1-6)")

1
<-—In(1-(1-6)")
n
(1-é"
1-(1-6)""
where the last inequality follows from —In(1-x) < % forx € (0,1).
Now, fixing § = 0.5, we have

1
< —.
n

QIS < -
<
Shoen-1)’
and then,
1_Q(Q(n)) > ln_(zn_l).

I
1= Q)" Il

Therefore, for Q(n) = {Q(n)}, we have (1—y) is exponentially larger

than (1 -7).

REMARK 5. In view of Item 4 in Lemma 2, the convergence rate in
n

Corollary 3 is consistently no worse than the classic O(IT? log(2D))
rate in Eq. (6) up to constants. Moreover, our new rate can be exponen-
tially faster, as demonstrated in Example 3. Our new analysis of VI,
based on the spectral gap, generalizes to absolutely halting LEMMs;
and perhaps surprisingly, it simultaneously yields improvements over
existing state-of-the-art analyses for well-studied subproblems. Let
us conclude with the new runtime result of V1: for both halting MDPs
and stochastic games with reachability objectives, VI is a polynomial

time algorithm (provided y is bounded away from 1).



Now, we show a new analysis of Pl for SSGs. This is obtained
by combining our new convergence rate of VI and a well-known
result from the literature—PI iterates move faster than VI iterates.

ProPOSITION 5 ([5, 6, 8]). Consider an LEMM with (Smin, Smax»
Safts 1, N, q, b) under conditions {C1,C2,C3}. Let x* be its unique
solution, let Qr(fa)x € Quax be any given max policy, let (x*))ez.,
be the iterates in leax(Q,(,?a)X), and let (X(t))tezzo be the iterates in

VI(x(®). For all t € Zs,, the following assertions hold:
(1) x(8) < X(t+1)}
) x <x*, and
(3) x < x®),

THEOREM 4 (NEW Pl ANALYSIS FOR SSGs). Consider an LEMM

Wwith (Smin, Smax> Saffs 1, N, q, b) under conditions {C1,C2,C3}. Let

e € Quay be any given max policy, and let (x'V)),ez., be the

iterates in leax(Q,(,;)a)X). There exists

m 1
1_)/10%(?},))

t=0(

such that x*) is the solution. Similar assertion holds for PImin(Qr(x?i)n)

for any given Qr(fizl € Quin. Thus, Pl is a strongly polynomial-time
algorithm when y is bounded away from 1.

Proor oF THEOREM 4. Let « € (0,1) be a fixed constant. We
define the following reduced vector:

=A@ (x* —Qx* —b), forallQ € Q.

If er) =0, thenx (9) is the solution, and the theorem trivially holds.

Now, let us assume rQ(O) # 0.
For all k € Z,, since g(k) = xmaX(QI(QX), let Q%) € Q such that

x® = Wx® 4. 17)
For all « € (0, 1), we have
12 = A@ (x* — QWP x* —b) = A@ (1 - QW) (x* — x))
due to Eq. (17), and
x—x® >0
due to Item 2 in Proposition 5. Therefore,
—A@ QW) (¢ — xRy < (1 < A@) (g _ x(R)),
and in view of
IA“QMW (x" - x|
< IACQW (A Mo - A (x* = x|
<y A (x = x9) |
<A x - x|,
we have

(k) %
1127 oo < 1A (x* = ) .

Let us consider an auxiliary sequence (x( ))'t‘

VI(x9). Then, we have

o as the iterates in

®) . ) .
112 oo < A (x" = xF) oo < A (x* = xF))|oo

(+2) )
< PDMIAY (x - x V)l
= rDMIAD (x" = x V)l
- - (0)
< (P IAD T- Q) A Ml I o

*xk (a)\k
e (')

Q(O)
Sy iy

lloo,

where (*) follows from Item 3 in Proposition 5, (**) follows from
Item 2 in Theorem 2, and (***) follows from Item 3 in Lemma 2.

QW
Let sy € arg max;¢,|r; | For all
1 A
k > [logl/y(a) (1_—)/(0())] = K,
we have
() k
Qo o® )" oo Q0 _ QO
1< e e 0 e < 0 e = 5,

and thus,
o) Q.
Therefore, if x(*) is not the solution, then Q(®) contains a row Qﬁgﬁ
that will be eliminated from any ng ) where k > K.
Finally, we can repeat the same argument for x(®), x(), x(2K),
.- There are at most m — n; — n, row choices to eliminate, and
therefore, there exists

t<(m-n;—-ny)-K
m 1

log (——
S log ()

such that x(*) is the solution. m|

ol

Finally, we state an immediate consequence of Theorem 4 for
stochastic games with discounted-sum objectives (while more detail
of the discounted-sum games are deferred to Section C):

COROLLARY 5 (NEW Pl ANALYSIS FOR DISCOUNTED-SUM GAMES).
Consider a two-player turn-based zero-sum stochastic game with
discounted-sum objective where the discount factory < 1. Let m be the
number of actions. Then, Pl is a strongly polynomial time algorithm

that converges in no more than O(% log(rly)) iterations.

REMARK 6. We give a technical remark on Theorem 4 and Corol-
lary 5. The proof generally follows the framework of [8, 16, 20]. How-
ever, our analysis, based on reduced vector, is more general and stream-
lined. On the one hand, for stochastic games with discounted-sum
objectives, while the state-of-the-art strongly polynomial time bound
in [8, Theorem 7.5] is given by

m n

0" tog (),
g

our result in Corollary 5 improves it by removing the logn factor.

On the other hand, we extend the strongly polynomial time com-

plexity result for the first time from discounted-sum objectives to

reachability objectives. Let us conclude with the new complexity

result of the problem classes: for both halting MDPs and stochastic



games with reachability objectives, Pl is a strongly polynomial time
algorithm (provided y is bounded away from 1).

4.2 Algorithms for Halting LEMMs
In this section, we study the algorithms for LEMMs under Condi-
tion C1. We first construct a counterexample showing that the VI
algorithm can also diverge for this class.
EXAMPLE 4 (DIVERGENCE OF VI). Consider the LEMM given by:
x1 = max{xs, x4},
Xz = max{xs, Xs},
x3 = —0.9x1 + 1.8x, — 1.5,
x4 = 0.5x1 + 1.5x — 1.5,
x5 = —0.5x; — 1.0,
x¢ = —0.25x1 — 0.25x2 — 1.0.

The above LEMM satisfies Conditions C1, C3 and C4. In particular,

Condition C1 can be verified by noting the following facts: (i) the

spectral radius of Q is less than 1, for all Q € Q; and (ii) the matrices

(Q +1) and (Q — 1) are both non-singular, for all Q € conv Q.
Consider the algorithm V1(x\?) with

x© =[3/7,5/7,-3/5,-3/14,-17/14,-9/7]",
then
xD = p(x") = [-3/14, -17/14,-3/5,-3/14,-17/14,-9/7] ",
x® = p(xM) = [-3/14, —17/14, —-489/140, —24/7, —21/28, -9/14] T,
x® = p(x®) = [-24/7,-9/14, —489/140, —24/7, —21/28, =9/14] ",
x® = p(x®) = [-24/7,-9/14,3/7,-117/28,5/7,1/56] ",
x® =p(x") =[3/7,5/7,3/7,-117/28,5/7,1/56] ",
x© = p(x®) = [3/7,5/7,-3/5,-3/14,-17/14,-9/7] ",

The above algorithm enters a loop.

Given that both PI and VI can diverge, now we revisit a less
studied algorithm for stochastic games, Simple Policy Iteration [13]
as well as its randomized variant.

(Randomized) Simple Policy Iteration. We consider Simple Policy
Iteration (SPI) as well as its randomized variant Randomized Simple
Policy Iteration (RandSPI). The pseudocodes of SPI and RandSPI are
given in Algorithm 3 and Algorithm 4, respectively. The SPI algo-
rithm runs iteratively: starting from certain choices of neighbors,
the algorithm finds the maximum index at which the corresponding
min or max equation is violated, and then updates the neighbor
choice at that index. The RandSPI algorithm runs recursively: when
there are k min and max variables, the algorithm iterates over N (k)
for the neighbor choice of the kth min or max variable, and then
recursively solves the new LEMM with (k — 1) min and max vari-
ables. For RandSPI, we require the order J (k) within each recursive
call to be chosen independently and uniformly at random.

THEOREM 6 (ANALYSES FOR LEMM UNDER {C1}). Consider an
LEMM with (Swin> Smax, Saff> 1, N, q, b) under Condition C1.

(1) Neither Pl nor VI converges.

Algorithm 3 Simple Policy Iteration SPI(1)

Require: 7 (i) is a permutation of N (i), for all i € [ny + ny].

1: Let Q = [er(1)(1)> " " * » €T (ny4nz)(1)> Qrr+mp+1s*** > Q) |
2 Letf «— (1,---,1) € [IN(D)]] x--- X [IN(n1 +ny)|]
3: loop

4: X ¢— (I — Q)_lb
5 I « {ieSmin | 3k € N(i) such that xx <xi}U{je
Smax | 3 € N(j) such that x; > xj}

6: if I' is empty then
7: return x

8: else

9: k «— max I'

10: if 4 # I[N (k)| then
11: b — 1+ 1
12: else

13: O — 1

14: end if

1 Qe = €714
16: end if

17: end loop

Algorithm 4 Randomized Iteration

RandSPI (Smina Smax> Safts 1, N, q, b)

1: if Spin U Smax is non-empty then

Simple  Policy

2 Let k « |Smin| + |Smax|
3 Get a (new) uniform random permutation 7 (k) of N (k)
4 fori=1,---,|N(k)| do
5 if k € Spax then
6: Sr,nax < Smax \ {k}
7 else
8 Sr/nin < Smin \ {k}
9: end if
10: Stg < Sam U {k}
11 Let q’ such that
, ety =k

4= q; k+1<j<n
12: X — RandSPI(S;m.n, Stax S;ﬂ, n,N,q’,b)
13: if k € Spax and x; = max;e n (k) x; then
14: Break the loop and return x
15: else if k € Sy and x = minje v (k) x; then
16: Break the loop and return x
17: end if
18: end for

19: else

2. LetQ e [qu-,qal”
21: return (I- Q)~'b

22: end if

(2) Let I (i) be any permutation of N (i), foralli € [ny+n3]. Then,
SPI(T) returns the solutionx* in no more thanIl;cs IN ()]
iterations.

minYSmax



(3) RandSPI(Smin, Smaxs Safts s N, q, b) returns the solution x* in
no more than

€S i USmax IN (D] + 1)

oni+ny

recursive calls in expectation.

ProoF. (1) The divergence of Pl and VI follows from Examples 1
and 4 respectively.

(2) We prove that the algorithm returns a feasible solution in
no more than IMjes . usyay [V (1)] iterations by induction on n; + na,
the number of min and max variables.

(Base) For n; + ny = 0, due to Condition C1, (I — Q) is invertible, so
the algorithm returns the feasible solution of the linear system in
one iteration.

(Induction) Assume the algorithm returns a feasible solution in no
more than Ijes, ;. US|V (1)| iterations if there are (n; + ny — 1)
min and max variables in an LEMM. Then, consider the LEMM
with (n; + nz) min and max variables satisfying Condition C1,
where there is a unique solution x*. Let [ be the smallest number in
[IN(n1 + n2)|] such that x;, ,,,, = xj_<n1+n2)(l). We notice that the
loop will not break before # being set to I: if a vector x satisfies
the first (ny + ny — 1) equations, the (n; + ny)-th equation will be
violated (otherwise, x* would not be the unique solution of the
original LEMM). Then, consider # being set to [. By induction, a
vector x satisfying the first (n; + ny — 1) equations will be obtained,
and this x = x* will be returned as the feasible solution of the
original LEMM (otherwise, one can construct a new LEMM by
replacing the (n; + nz)th equation by xy,+,, = x;, which has two
different feasible solutions x and x*). Moreover, the number of
iterations is upper bounded by

l : Hie[n1+n271] |N(l)| < HiE[ﬂ1+n2] |N(l)|

from the above analysis.

(3) Since there exists a solution in the LEMM, for each k there
exists an index i € [N (k)| from which the algorithm will return
the feasible solution. Let 7 (k) denote the number of recursive calls
for an LEMM with k min and max variables. Since the order 7 (k)
in Algorithm 4 is chosen independently and uniformly at random,
we get the following recursion:

IN(k)| .
J IN(K)| +1
E[7 (k)] < ; W-E[T(k—l)]:fE[T(k—l)].

Therefore, the total number of recursive calls is upper bounded by:

 Micsuosns (IN ()] +1)

oni+n;

E [T (n1 + n2)]

]

REMARK 7. In Items 1 and 2, we know that while classic algorithms
like P1 and V1 diverge, the less studied algorithm of SP1 converges. We
also remark that due to a lower bound in [13] for halting MDPs, SPI
in the worst case has to go through all possible choices of neighbors
and makes exponentially many iterations.

In Item 3 of Theorem 6, the convergence rate of RandSPl shows
that it is in expectation exponentially faster than the brute force that
naively enumerates all lics, i USmn.x INV (i)| possible neighbor choices
of min and max variables.

5 Discussions

Since all the problem classes {C1}, {C1+}, and {C1,C2} are in the
class of UP N coUP, any strict separation between these classes
would imply P # UP N coUP and is, thus, notoriously difficult to
prove. However, the algorithmic studies in this paper reveal that the
classic algorithms (like policy iteration and value iteration) behave
very differently for these problem classes, which indicates that they
may have intrinsically different structures.

As one of the key results of this paper, we know that for LEMMs
under {C1+}, value iteration is a polynomital time algorithm when
y isbounded away from 1. It is an interesting open question whether
there exists a polynomial time algorithm for LEMMs under {C1} (pro-
vided y bounded away from 1).

It is also known that a randomized subexponential-time algo-
rithm exists for SSGs [12] and, thus, for the LEMMs under {C1,C2}
following from the linear reduction (cf. Lemma 1). However, we do
not know whether this randomized subexponential upper bound
can be extended to the LEMMs under {C1} or under {C1+}. The
problem is that the analysis from Ludwig [12] relies heavily on
monotonicity, which does not hold anymore due to the negative
coefficients. Extending the subexponential upper bound or prov-
ing any exponential lower bound for LEMMs under {C1} or under
{C1+} is an interesting future direction.

Given an absolutely halting LEMM, it is not clear how to estimate
the new conditioning y efficiently. This is indeed a very non-trivial
problem for the field of spectral analysis. Since the spectral radius
can be irrational, most of the existing numerical schemes are not in
polynomial time, not even for the fundamental classes of Markov
chains. We propose a simple binary search method in Section D,
and leave the more thorough numerical analysis as a fruitful future
direction.
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A Checking halting condition is coNP-complete

It is proven in [4] that checking Condition C1 is coNP-hard. In order
to show that checking Condition C1 is coNP-complete, it sufficies
to prove its coNP membership.

Assume Condition C1 does not hold. Let Q@ € Q.If o(Q?) >
1, we already have a polynomial certificate Q(%). Now, let us assume
0(Q@) < 1. Since Condition C1 does not hold, there exists a matrix
in conv(Q) such that it has an eigenvalue 1. Thus, there exists a
matrix Q € conv @ such that (I — Q) is a singular matrix-that is,
a linear combination of (I — Q)’s rows equals 0. Therefore, one
can use the signs of the coefficients in the linear combination as a
certificate, which can be checked by linear program in polynomial
time.

B Missing proof

ProOF OF THEOREM 1. (1) From Lemma 1, an LEMM under {C1+}
can be reduced to an LEMM under {C1+,C3}. Now, we show that
an LEMM under {C1+,C3} can be further reduced to an LEMM
under {C1+,C3,C4}, which generally follows the reduction in [4,
Appendix A.4].

Consider an LEMM with (Syin; Smax, Saffs 1, N, q, b) under Con-
ditions C1+ and C3. Define, for i € [1,n;],

N @@ ={l+2n|leNGHN([Ln]U[n+ny+1,n])}uU
{I+n|leN(@)N[ng+1,n+n2]},
forie€ [n;+ 1,n; + ny],
N @) ={l+n|le Ni)N([1,n]U[n+ny+1,n])} U
{l+2n|leN(@)N|[n +1,n +ny]},
and for k € [ny + 1,n],

O(n+n1)><n1 0(n+n1)><n2 O(n+n1)><(nfn17n2)

Ongxnl Ing Onzx(n—nl—nz)

O(n-ni-ng)xn  O(n-ni—ng)xny  O(n-ny—ny)x(n-ny-ny)

9k -

e =
4 In1 Onlxnz Onlx(nfnlfnz)
Onyxny Onyxn, O"ZX(”_”l_nZ)
O(n—nl—nz)xnl O(n—nl—nz)xng In—nl—nz
We consider the following LEMM:
xj=min {x] [l e N'(i)}, 1<i<n +ny,
x,’(zc],:x’+bk, ni+ny,<k<n,
r (18)
X] = =X|_p» n<l<2n,
Xy = Xy _oms 2n < m < 3n,

which satisfies Conditions C1+, C3 and C4. Then, x is a solution to

X
the original LEMM if and only if X’ = [-X| is the solution to (18),
X
where
In1 Onl Xny On1 X(n—nj—ny)
X= Onzxnl _Inz Onzx(nfnlfnz) tX.

O(n—nl—nz)xnz In—nl—ng

Therefore, the LEMM under {C1+,C3,C4} is as hard as the LEMM
under {C1+,C3}.
(2) Lemma 1 shows that the LEMMs under {C1,C2} and {C1,C2,C3}

O (n-ny-ny)xm

are equivalent. Then, the claim follows immediately from [7, Lemma 8],

which shows the equivalence between the LEMMs under {C2,C3}
and {C1,C2,C3}. O

C Stochastic games with discounted-sum
objectives

Consider a two-player turn-based zero-sum stochastic games with
discounted-sum objectives where the discount factor y < 1. Accord-
ing to the classic results [8, 15, 18], the game can be formualted as an
LEMM with (Smin, Smax, Saff; 7. N, q, b), where the following prop-
erties hold: (i) Conditions C2 and C3 are satisfied; (ii) N (i) C S.g,
for all i € Spin U Smax; and (iii) qu =y, forall k € Sug.

Due to the properties (i) and (iii), Condition C1 is trivially satis-
fied. Therefore, Corollary 5 follows directly from Theorem 4.

D A feasible method to estimate y
We propose a simple binary search method to estimate the new
halting conditioning y introduced in Eq. (9).
Let us consider an absolutely halting LEMM. Let LP(y) denote
the following system of linear inequalities:
yv=|Qlv+1, forallQ € Q,
{ vzl

Let y© = 0and7® = j.Forall ¢ > 0,let ) = L(y® +79), and
let
o) _ {Z“), if LP(7(1)) is feasible,

79, otherwise,

—(t+1) {)7“), if LP(7()) is not feasible,
)/ =

79, otherwise.

Then, ) — y(©) < 27!}. Moreover, in view of Proposition 4 and
Item 4 in Lemma 2, we have

(t)’—(t)]’

vyely'™.y

forall t > 1.
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