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Abstract
We consider linear equations with min and max operators (LEMMs)

that contains many subproblems ranging from optimization, games,

to model checking. Recently, Chatterjee et al. [4] give a system-

atic study of the complexity of different subclasses. Three key

subclasses—(i) halting branching process, (ii) absolutely halting

LEMMs, and (iii) halting LEMMs—are identified as being in UP ∩
coUP while generalizing stochastic games. In this work, we study

the classic algorithms of Policy Iteration (PI) and Value Iteration (VI)

for these general subclasses.

First, we simplify the problem hierarchy by showing the equiv-

alence between halting branching process and stochastic games.

Then, we show that PI diverges for absolutely halting LEMMs, while

VI converges following from a new analysis based on spectral gap.

Applying our new analysis back to well-studied subproblems of

stochastic games yields surprising improvements: we refine the

long-standing analyses of VI and PI for reachability objectives using

the spectral gap, and improve the best-known strongly polynomial

rate of PI for discounted-sum objectives (with fixed discount factor)

by a logarithmic factor. Finally, we show that neither PI nor VI

converges for general halting LEMMs and, to this end, propose

variants of simple policy iteration that ensure convergence across

all subclasses.
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1 Introduction
Optimization problem. Optimization is in the core of many prob-

lems in formal methods, programming languages, logics, and ar-

tificial intelligence. Prominent examples include model checking,

probabilistic program analysis, constraint programming, reinforce-

ment learning, evolutionary games, to name a few. In this work,

we are interested in the optimization problem of solving for x =

[𝑥1, . . . , 𝑥𝑛]⊤ ∈ R𝑛 in the system of Linear Equations with Min and
Max operators (LEMM) given by (𝑆min, 𝑆max, 𝑆aff , 𝑛, N , q, b):

𝑥𝑖 = min

𝑙∈N(𝑖 )
𝑥𝑙 , 𝑖 ∈ 𝑆min ,

𝑥 𝑗 = max

𝑙∈N( 𝑗 )
𝑥𝑙 , 𝑗 ∈ 𝑆max ,

𝑥𝑘 = q⊤
𝑘
x + 𝑏𝑘 , 𝑘 ∈ 𝑆aff ,

(1)

where the following conditions are satisfied: (a) 𝑆min, 𝑆max, and

𝑆aff are disjoint sets such that 𝑆min ∪ 𝑆max ∪ 𝑆aff = [𝑛],1 (b) ∅ ⊊
N(𝑖) ⊆ [𝑛] for 𝑖 ∈ 𝑆min ∪ 𝑆max, (c) q𝑘 ∈ R𝑛 for 𝑘 ∈ 𝑆aff , and (d)

b = [𝑏1, · · · , 𝑏𝑛]⊤ ∈ R𝑛 such that 𝑏𝑖 = 0 for 𝑖 ∈ 𝑆min ∪ 𝑆max.

It is known from the literautre [4] that Problem (1) covers many

applications, such as linear program with boolean variables [17],

verifying neural networks [9], constraint satisfaction problems [2],

and evolutionary in ecosystems [19].

Restrictive conditions. Given the generality and hardness of the

problem, researchers focus on several natural subclasses and let us

first recall the restrictive conditions: (C1) the operators are halting;

(C1+) the operators are absolutely halting; (C2) the coefficients

are non-negative; (C3) the rows sum up to one; and (C4) there is

only min operator or only max operator. Various subsets of condi-

tions yield various subproblems. For instance, Condition C2 models

branching processes; Conditions C2 and C3 together model prob-

abilistic transitions; and Condition C1 or Condition C1+ implies

that the underlying state transitions satisfies stability or absolute

stability.

Well-studied subproblems. A few well-studied problems corre-

spond to different subclasses: with min and max operators, under

Conditions C2 and C3 we obtain (two-player turn-based zero-sum)

stochastic games with reachability objectives; the seminal paper [7]

shows that the halting condition C1 can be further assumed without

loss of generality, which leads to halting stochastic games (a.k.a.

1
Denote [𝑘 ] := {1, 2, · · · , 𝑘 }, for all 𝑘 ∈ Z≥1 .
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simple stochastic games or SSGs); while when there is only one

type of opearator—that is, under Condition C4—the stochastic game

is reduced to Markov decision process (MDP) with reachability ob-

jectives.

Key open subproblems. Recently, Chatterjee et al. [4] give a sys-
tematic study of the computational complexities of the LEMM sub-

problems under all subsets of conditions. All the subproblems are

classified into the NP-complete category, the UP ∩ coUP (while no

easier than SSGs) category, and the category solvable in polynomial

time. In this paper, we study algorithms for LEMM subproblems,

and in particular, for the ones in the second category—UP ∩ coUP—

because from an algorithmic perspective, the second UP ∩ coUP

category represents the most exciting challenges. The subproblems

in this category are not NP-hard (unless NP = coNP), yet general-

ize the fundamental and difficult problem of SSGs, for which the

existence of polynomial time algorithms is a major open problem

in the field.

Policy Iteration and Value Iteration. Since the key open subprob-

lems are natural generalization of SSGs, the classic algorithms for

SSGs are the natural candidates for these subproblems. The two

most fundamental algorithms for SSGs are Policy Iteration (PI) and
Value Iteration (VI) [1, 6]: PI iteratively updates the policy of one

player based on the best response of the other player; VI itera-
tively updates the value vector by propagating the last value vector

through the games. In this work, we consider natural extensions of

both PI and VI to the framework of LEMMs, and investigate their

convergence behaviors for the different general subclasses.

Related work on the runtime analyses of PI and VI. It is practically
observed that both PI and VI converge fast formost instances in SSGs

and MDPs, but both algorithms take exponential time in the worst

case. The special class of discounted-sum objectives is relatively

well understood in theory: when the discount factor 𝛾 is bounded

away from 1, VI converges in polynomial time [11], and PI converges
in strongly polynomial time due to the seminal result of [8, 20].

However, for the (more general) haltingMDPs and stochastic games

with reachability objectives, the runtime analyses are considerably

more elusive. The only known upper bound for PI in general is the

exponential bound from enumerating all the possible policies. The

currently best upper bound for VI is a convergence rate of ˜O( 1

1−𝛾 ),
2

where (1−𝛾) describes the guaranteed probability of reaching sink

states after every 𝑛 steps. Therefore, the following problems remain

open:

• Whether the dependence on (1 −𝛾) in the current analysis of VI
for MDPs and SSGs can be improved?
• whether the (strongly) polynomial runtime results for discounted-
sum objectives can be generalized to broader classes with reach-
ability objectives?
• Whether the PI and VI still converge for various LEMM general-
izations?

Related work on Markov chain and spectral gap. Markov chain
is the fundamental model underpinning the state transitions in

a probabilistic system. Its mixing time measures how quickly the

system evolves into a steady state distribution. An important tool

2
In the

˜O(·) notation, the polynomial terms are obsolete.

from spectral analysis is the spectral gap—the difference between
the transition matrix’s two largest eigenvalues

3
—that can be used

to control the mixing time [10]. However, to our knowledge, this

concept of spectral gap has never been generalized to the prob-

lems of MDPs and stochastic games with reachability objectives.

Therefore, the following question remain open:

• Whether one can use the tool from spectral analysis to explore
the connection between spectral gap and the convergence of VI
and PI for MDPs, SSGs, or even halting LEMMs?

Our contributions. In this work, we give a systematic algorithmic

study on the convergence of PI and VI for various LEMM subprob-

lems in UP ∩ coUP. Moreover, when applying our new approach

back to the fundamental problem of SSGs, we have (surprisingly)

improved the long-standing running time analyses of VI and PI,
which is a key result of this work. In detail, our contributions are

listed as follows:

(1) We show the equivalence between halting branching process

and SSG by a linear reduction (Theorem 1).

(2)We consider absolutely halting LEMMs and show that PI diverges
yet VI converges (Theorem 2). The key technique of our VI analysis
is a new preconditioning that connects the convergence rate and

the spectral gap (Lemmas 2 and 3).

(3) We consider our new VI analysis approach for the fundamental

problems of MDPs and stochastic games:

(3a) For halting MDPs and stochastic games with reachability

objectives, by connecting the convergence rates of VI and PI with
spectral gap, we refine the long-standing bound of VI (Corollary 3)

and obtain a new bound of PI (Theorem 4);

(3b) For stochastic games with discounted-sum objectives, we

improve the best-known strongly polynomial time bound of PI by
a logarithmic factor (Corollary 5).

(4) We consider general halting LEMMs and show that neither PI

nor VI converges. To this end, we revisit SPI and RandSPI and prove

their convergence for the general class (Theorem 6).

2 Preliminaries
LEMM and its decision problem. We refer to Eq. (1) as the LEMM

with (𝑆min, 𝑆max, 𝑆aff , 𝑛, N , q, b). If x ∈ R𝑛 satisfies Eq. (1), we say
that x is a (feasible) solution to the LEMM. We define the LEMM
decision problem as follows: given an LEMM with (𝑆min, 𝑆max, 𝑆aff ,

𝑛,N , q, b), a threshold 𝛽 ∈ R, and an index 𝑖 ∈ [𝑛], decide whether
there exists a feasible solution x of the given LEMM, such that

𝑥𝑖 < 𝛽 .

Vectors, matrices and sets. Let e𝑖 = [𝛿𝑖,1, . . . , 𝛿𝑖,𝑛]⊤, 𝑖 ∈ [𝑛] ,
where 𝛿𝑖, 𝑗 is 1 if 𝑖 = 𝑗 and 0 otherwise. Let 0𝑘 ∈ R𝑘 (or 1𝑘 ∈ R𝑘 )
denote the vector where every element in the vector equals 0 (or

1). For any vector v ∈ R𝑛 , let diag(v) ∈ R𝑛×𝑛 denote the diagonal
matrix with v on its diagonal. LetO𝑘1×𝑘2

∈ R𝑘1×𝑘2
denote thematrix

where every element equals 0. Let I𝑘 ∈ R𝑘×𝑘 denote the identity

matrix. The subscripts 𝑘 , 𝑘1, and 𝑘2 might be obsolete when they are

clear from the context. For any matrix Q ∈ R𝑛×𝑛 , let 𝜚 (Q) denote
its spectral radius; let det(·) denote its determinant; let |Q| ∈ R𝑛×𝑛
denote the matrix where each element is the absolute value of the

3
The largest eigenvalue in a Markov chain is trivially 1. Let 𝛾 be the second largest

eigenvalue, and the spectral gap is given by (1 − 𝛾 ) .



Halting

Absolutely Halting

SSG

Problem Classes Checking PI VI SPI
{C1}, {C1,C3}, {C1,C4}, {C1,C3,C4} coNP-comp. ✘ ✘ ✔

{C1+}, {C1+,C3}, {C1+,C4}, {C1+,C3,C4} PTIME ✘ ✔ ✔

{C1,C2}, {C2,C3}, {C1,C2,C3} PTIME ✓ ✓ ✓

Figure 1: Three key categories in the complexity class UP ∩ coUP while no easier than SSGs: the subproblems, the complexity of checking the
conditions, and the convergence of PI, VI and SPI algorithms. The rows of the subproblems are ordered by decreasing generality (and thus difficulty)
from top to bottom. The subproblems in the same row are linearly equivalent to each other. The new results from this paper are in bold and red.

corresponding element in Q; and let Q−𝑖 𝑗 ∈ R(𝑛−1)×(𝑛−1)
denote

the matrix formed from Q by deleting its 𝑖th row and 𝑗th column.

For any finite set, let |·| denote the number of elements in the set.

Notations. Consider the LEMM with (𝑆min, 𝑆max, 𝑆aff , 𝑛, N , q,
b). Let 𝑛1 = |𝑆min | and 𝑛2 = |𝑆max |. Let 𝑚 =

∑
𝑖∈𝑆

min
∪𝑆max

|N (𝑖) |.
Without loss of generality, we assume 𝑆min = {1, · · · , 𝑛1} and 𝑆max =

{𝑛1 + 1, · · · , 𝑛1 + 𝑛2}, and then, we denote

Qmin =
{
[eℓ1 , · · · , eℓ𝑛

1

]⊤
�� ℓ𝑖 ∈ N (𝑖) for 𝑖 ∈ 𝑆min

}
,

Qmax =
{
[eℓ𝑛

1
+1
, · · · , eℓ𝑛

1
+𝑛

2

]⊤
�� ℓ𝑗 ∈ N ( 𝑗) for 𝑗 ∈ 𝑆max

}
,

Qaff = [q𝑛1+𝑛2+1, . . . , q𝑛]⊤ .

Let

Q =

{ 
Qmin

Qmax

Qaff


����� Qmin ∈ Qmin and Qmax ∈ Qmax

}
,

and let conv(Q) denote the convex hull of Q. When all input num-

bers are rational, for all 𝑘 ∈ 𝑆aff , let 𝑑𝑘 ∈ Z≥1 be the least common

multiple of q𝑘 and 𝑏𝑘 (that is, 𝑑𝑘q𝑘 ∈ Z𝑛 and 𝑑𝑘𝑏𝑘 ∈ Z). Denote

𝐷 = max

𝑘∈𝑆
aff

𝑑𝑘 and 𝜀
∗ = 2

−(𝑛+1)𝐷−𝑛 . (2)

We say that x ∈ R𝑛 is an 𝜀∗-accurate solution, if there exists a

solution x∗ such that ∥x − x∗∥∞ ≤ 𝜀∗.

2.1 Restrictive conditions
The LEMM decision problem is NP-complete in general, while to

obtain computationally tractable problem classes several restrictive

conditions are introduced in the literature [4, 7, 14].

Condition C1 (Halting). For all Q ∈ conv(Q), we have that
lim𝑘→∞ Q𝑘 = O𝑛 .

Condition C1+ (Absolutely halting). For all Q ∈ Q, we have
that lim𝑘→∞ |Q|𝑘 = O𝑛 .

Condition C2 (Non-negativity). For all 𝑘 ∈ 𝑆aff , we have that
q𝑘 ≥ 0 and 𝑏𝑘 ≥ 0.4

Condition C3 (Sum upto one). For all 𝑘 ∈ 𝑆aff , we have that
q𝑘 ≥ 0, 𝑏𝑘 ≥ 0, and q⊤

𝑘
1 + 𝑏𝑘 ≤ 1.

Condition C4 (Max-only or min-only). Either 𝑆min = ∅ or
𝑆max = ∅.

4
Throughout this paper, all equalities, inequalities, and min/max operations involving

two vectors, or a vector and a real number, are understood element-wise; that is, they

are applied separately to each corresponding coordinate.

We use the following subset notation for the LEMM decision

problem under various subsets of the conditions. For instance, “the

LEMM decision problem under {C1,C2}” means “the LEMM deci-

sion problem under Conditions C1 and C2”.

We also remark that, while Condition C1+ is in general stronger

than Condition C1, under Condition C2 they become trivially equiv-

alent. In other words, the set of conditions {C1+,C2} is equivalent
to the set of conditions {C1,C2}.

Discussion about related problem classes. The conditions consid-
ered above are natural in relevant literature. The LEMM under

{C2,C3,C4} corresponds to Markov decision process (MDP) with

reachability objectives; the LEMM under {C2,C3} corresponds to
(two-player turn-based zero-sum) stochastic games with reachabil-

ity objectives; the LEMM under {C2} corresponds to branching
process. In the contexts of MDP, stochastic games, and branching

process, the Condition C1 is known as halting condition characteriz-

ing the stability of the underlying state transitions. For instance, the

halting stochastic games (a.k.a. simple stochastic games or SSGs)

correspond to the LEMM under {C1,C2,C3}.

2.2 Computational complexity results from
literature

Complexity of the LEMM decision problem. The MDP (or the

LEMM under {C2,C3,C4}) is known to be solvable in polynomial

time [14]. The stochastic games (or the LEMM under {C2,C3})
are known in the complexity class of UP ∩ coUP [3, 7], yet the

existence of a polynomial-time algorithm remains a major open

problem. Condon [7] shows that stochastic games are polynomially

equivalent to SSGs (or the LEMM under {C1,C2,C3}).
More recently, Chatterjee et al. [4] give a systematic study of the

computational complexities under different subsets of conditions.

In detail, they show that the LEMM under {C2,C4} or {C3,C4}
is NP-hard; while the halting LEMM (that is, under {C1}) has a
unique solution and belongs to the complexity class UP ∩ coUP;

and moreover, the LEMM under {C1,C3}, {C1,C4}, or {C1,C3,C4}

is no easier than the halting LEMM. In particular, they indentify

all the subproblems between the halting LEMMs and the SSGs as

belonging to the complexity class UP ∩ UP yet no easier than SSGs.

Complexity of checking the conditions. The complexity of check-

ing the subsets of conditions has also been studied in the litera-

ture [4, 14]. While Conditions C2 to C3 can be easily checked in

linear time, [4] further show that Condition C1+ can be checked in

polynomial time yet checking Condition C1 is coNP-hard. Together



with the complexity of the LEMM decision problem, this implies

that the language of “LEMMdecision problems under Condition C1+

with ‘yes’ answers” is in UP ∩ coUP.

We summarize the complexity results known from the literature.

Proposition 1 ([4, 7, 14]). The following assertions hold:
• The LEMM decision problem under {C2,C4} or {C3,C4} is NP-
complete.
• The LEMM under {C1} has a unique solution, and thus, its
associated decision problem is in UP ∩ coUP.
• The LEMM under {C2,C3,C4} or {C1,C2,C4} is polynomially
solvable, and thus, their associated decision problems are in
PTIME.
• The LEMMs under {C1} and the LEMMs under {C1,C3,C4} are
linearly equivalent.
• The LEMMs under {C1,C2,C3}, the LEMMs under {C2,C3}, and
the SSGs are linearly equivalent.
• The LEMMs under {C1,C2,C3,C4}, the LEMMs under {C2,C3,C4},
and the MDPs with reachability objectives are linearly equiva-
lent.
• Checking Condition C1 is coNP-complete;5 checking Condi-
tion C1+ is in PTIME; and checking Conditions C2 to C4 can be
done in linear time.

Remark 1. In Proposition 1, we know from the literature that
all (except two) of the LEMM subproblems are classified precisely into
three complexity categories: NP-complete, UP ∩ coUP (while no easier
than SSGs), and PTIME. In detail:
• NP-complete: {C2,C4}, {C3,C4}, {C2}, {C3}, {C4}, and ∅;
• UP ∩ coUP (while no easier than SSGs): {C1}, {C1,C3}, {C1,C4},
{C1,C3,C4}, {C1+}, {C1+,C3}, {C1,C2}, {C2,C3}, and {C1,C2,C3};
• PTIME: {C1,C2,C3,C4}, {C2,C3,C4}, and {C1,C2,C4}.

There are two remaining subproblems {C1+,C4} and {C1+,C3,C4},
which we do not know from the literature whether they are easier or
harder than SSGs. Therefore, these may belong to the UP ∩ coUP cate-
gory or the PTIME category, and their memberships are not entirely
clear from the results in the literature.

Proposition 1 further classifies the nine of the LEMM subproblems
in UP ∩ coUP (while no easier than SSGs) into three key subclasses:
• Halting LEMMs: the first four LEMM subproblems ({C1}, {C1,C3},
{C1,C4}, and {C1,C3,C4}) in the top row are linearly equivalent;
• Absolutely halting LEMMs: the three LEMM subproblems {C1+},
{C1+,C3}, and {C1,C2} are no harder than the first four subprob-
lems in the top row while no easier than the last two subproblems
in the bottom row; and
• SSGs: the last two LEMM subproblems ({C2,C3} and {C1,C2,C3})
from the bottom row are linearly equivalent to SSGs.

For the algorithmic study in this work, we focus on developing
algorithms for the subproblems in the (arguably most interesting)
complexity class of UP ∩ coUP (while no easier than SSGs). Moreover,
we also try to identify the exact memberships for the two remaining
subproblems {C1+,C4} and {C1+,C3,C4}.

5
In the original paper of [4], checking Condition C1 is proven to be coNP-hard. This

complexity result can indeed be strengthened to coNP-completeness. The detailed

proof can be found in Section A.

2.3 Classic algorithms: policy iteration and
value iteration

As discussed above, [4] highlights a few new LEMM subclasses in

UP ∩ coUP while no easier than SSGs. In this paper, we study the

algorithms for these subclasses. In this section, we formalize the

classic algorithms of Policy Iteration (PI) and Value Iteration (VI),
and then review their classic analyses in the literature under the

setting of SSGs.

Policy Iteration. Given an LEMM with (𝑆min, 𝑆max, 𝑆aff , 𝑛, N , q,
b), for every max policy Qmax ∈ Qmax, we define its value estimate

xmax (Qmax) ∈ R𝑛 as the (unique) solution of the following system

of equations:
𝑥𝑖 = min

𝑙∈N(𝑖 )
𝑥𝑙 , 1 ≤ 𝑖 ≤ 𝑛1 ,

[𝑥𝑛1+1, · · · , 𝑥𝑛1+𝑛2
]⊤ = Qmaxx ,

𝑥𝑘 = q⊤
𝑘
x + 𝑏𝑘 , 𝑛1 + 𝑛2 < 𝑘 ≤ 𝑛 .

(3)

Based on this value estimate, the max policy extraction 𝜋max : R𝑛 →
Qmax satisfies the following condition: for every x ∈ R𝑛 , let𝜋max (x) ∈
Qmax such that

𝜋max (x) · x = max

Q′
max
∈Qmax

Q′
max
· x .

The pseudocode of Policy Iteration algorithm updating max poli-

cies (PImax) is given in Algorithm 1. Starting from an initial max

policy Q(0)
max

, PImax iteratively estimates the value and extracts the

next max policy.

Algorithm 1 Policy Iteration updating max policies PImax(Q(0)
max
)

Require: Q(0)
max
∈ Qmax

for 𝑡 = 1, 2, · · · do
x(𝑡−1) = xmax (Q(𝑡−1)

max
)

Q(𝑡 )
max

= 𝜋max (x(𝑡−1) )
end for

Similarly, we can also define value estimate xmin : Qmin → R𝑛 ,
min policy extraction 𝜋min : R𝑛 → Qmin, and have a Policy Iteration

algorithm updating min policies (PImin).
It should be noted, however, that greedily updating both min

and max policies simultaneously does not converge for SSGs [6], so

we only consider the policy iteration updating max or min policies,

but not both.

Value Iteration. Given an LEMM with (𝑆min, 𝑆max, 𝑆aff , 𝑛, N , q,
b), define the value iteration operator 𝜐 : R𝑛 → R𝑛 as follows: for
any x ∈ R𝑛 , let x′ = 𝜐 (x) such that

𝑥 ′𝑖 = min

𝑙∈N(𝑖 )
𝑥𝑙 , 1 ≤ 𝑖 ≤ 𝑛1 ,

𝑥 ′𝑗 = max

𝑙∈N( 𝑗 )
𝑥𝑙 , 𝑛1 < 𝑗 ≤ 𝑛1 + 𝑛2 ,

𝑥 ′
𝑘
= q⊤

𝑘
x + 𝑏𝑘 , 𝑛1 + 𝑛2 < 𝑘 ≤ 𝑛 .

(4)

The pseudocode of value iteration algorithm (VI) is given in Al-

gorithm 2. Starting from an initial value vector x(0) , VI iteratively
computes the next value vector by the 𝜐 operator.

Suppose all input numbers are rationals. Let us recall the 𝜀∗

defined in Eq. (2). As shown in Proposition 2, while VI itself is



Algorithm 2 Value Iteration VI(x(0) )

Require: x(0) ∈ R𝑛
for 𝑡 = 1, 2, · · · do

x(𝑡 ) = 𝜐 (x(𝑡−1) )
end for

an approximation algorithm, the exact solution can be obtained

in polynomial time from any 𝜀∗-accurate solution (provided the

halting condition holds). Therefore, the analyses of VI algorithm
for LEMMs under halting condition focus on the complexity of

reaching an 𝜀∗-accurate solution.

Proposition 2. Consider an LEMM with (𝑆min, 𝑆max, 𝑆aff , 𝑛, N ,
q, b) under Condition C1. Let x∗ be its unique solution. Furthermore,
suppose all input numbers are rationals. Let x ∈ R𝑛 be an 𝜀∗-accurate
solution, and let Q ∈ Q such that Qx + b = 𝜐 (x). Then,

x∗ = (I − Q)−1b .

Proof. By Eq. (2), let

𝛤 = diag(1, · · · , 1, 𝑑𝑛1+𝑛2+1, · · · , 𝑑𝑛) ∈ Z𝑛×𝑛 .

We have 𝛤b ∈ Z𝑛 , and 𝛤Q ∈ Z𝑛×𝑛 for all Q ∈ Q.
LetQ∗ ∈ Q such that x∗ = Q∗x∗+b. Under Condition C1, (I−Q∗)

is invertible, and we have

x∗ = (I − Q∗)−1b = [𝛤 (I − Q∗)]−1 (𝛤b) = M
det(𝛤 (I − Q∗)) (𝛤b) ,

where M is the adjugate matrix of 𝛤 (I − Q∗). In view of 𝛤b ∈ Z𝑛
and 𝛤Q∗ ∈ Z𝑛×𝑛 , we haveM ∈ Z𝑛×𝑛 , and then

det(𝛤 (I − Q∗))x∗ =M(𝛤b) ∈ Z𝑛 .

Moreover, we have

det(𝛤 (I−Q∗)) ≤ 𝐷 |𝑆aff
|
det(I−Q∗) ≤ 𝐷 |𝑆aff

| (𝜚 (I−Q∗))𝑛 < 𝐷 |𝑆aff
|
2
𝑛,

where the last inequality follows from Condition C1. Therefore, for

all 1 ≤ 𝑖, 𝑗 ≤ 𝑛,

either 𝑥∗𝑖 = 𝑥∗𝑗 or |𝑥∗𝑖 − 𝑥∗𝑗 | ≥
1

det(𝛤 (I − Q∗)) > (2𝐷)
−𝑛 .

Since ∥x−x∗∥∞ ≤ 𝜀∗, we have for all 1 ≤ 𝑖, 𝑗 ≤ 𝑛, if 𝑥𝑖 ≥ 𝑥 𝑗 , then

𝑥∗𝑖 ≥ 𝑥𝑖 − 𝜀∗ ≥ 𝑥 𝑗 − 𝜀∗ ≥ 𝑥∗𝑗 − 2𝜀∗ = 𝑥∗𝑗 − (2𝐷)−𝑛,

and hence, 𝑥∗𝑖 ≥ 𝑥∗𝑗 . Therefore, the neighbor choices of Q in 𝜐 (x) =
Qx + b are made correctly, and x∗ = Qx∗ + 𝑏 = (I − Q)−1b. □

Now, we cite the classic analyses of PI and VI algorithms for SSGs

in the literature.

Proposition 3 (Algorithm analyses for SSGs [5, 6]). Consider
an LEMMwith (𝑆min, 𝑆max, 𝑆aff ,𝑛,N , q, b) under conditions {C1,C2,C3}.
Let x∗ be its unique solution.

(1) Let Q(0)
max
∈ Qmax and Q(0)

min
∈ Qmin be any given policies.

The following assertions hold for the iterates (x(𝑡 ) )𝑡 ∈Z≥0
in

PImax(Q(0)
max
) and the iterates (x(𝑡 ) )𝑡 ∈Z≥0

in PImin(Q(0)
min
) :

(a) There exists 𝑡 ≤ Π 𝑗∈𝑆max
|N ( 𝑗) | − 1 such that x(𝑡 ) = x∗;

(b) There exists 𝑡 ≤ Π 𝑗∈𝑆
min
|N ( 𝑗) | − 1 such that x(𝑡 ) = x∗.

(2) Let

𝛾 ≜ max

{
∥Q(𝑛) · · ·Q(1) ∥

1

𝑛
∞

��� Q(𝑖 ) ∈ Q for all 𝑖 ∈ [𝑛]
}
< 1 . (5)

Let x(0) ∈ R𝑛 be any given point such that x(0) ≤ x∗. The fol-
lowing assertions hold for the iterates (x(𝑡 ) )𝑡 ∈Z≥0

in VI(x(0) ):
(a) For all 𝑘 ∈ Z≥0,

max

𝑖∈[𝑛]
(x∗𝑖 − x

(𝑘𝑛)
𝑖
) ≤ 𝛾𝑛 max

𝑖∈[𝑛]

(
x∗𝑖 − x

( (𝑘−1)𝑛)
𝑖

)
≤ · · · ≤ 𝛾𝑘𝑛 max

𝑖∈[𝑛]

(
x∗𝑖 − x

(0)
𝑖

)
;

(b) Suppose all input numbers are rationals. There exists

𝑡 <
1

1 − 𝛾
[
𝑛 log(2𝐷) + log

(
2 max

𝑖∈[𝑛]
(x∗𝑖 − x

(0)
𝑖
)
]
+ 𝑛 (6)

such that x(𝑡 ) is an 𝜀∗-accurate solution.

Similar assertions hold for VI(x(0) ) iterates (x(𝑡 ) )𝑡 ∈Z≥0
with

x(0) ≥ x∗.

Remark 2. Both PI and VI algorithms converge for SSGs. We re-
mark that the convergence of VI is established for iterates from below
and from above. Specifically, after every 𝑛 steps, VI achieves linear
convergence with a contraction factor 𝛾𝑛 ∈ [0, 1).

As a final remark, although PI and VI algorithm perform well in
practice [14], they both run in exponential time in the worse case.6 To
get any polynomial bound for SSGs requires a major breakthrough in
the field.

3 Equivalence Between LEMM Subclasses
In this section, we will show reductions between several LEMM

subclasses. Before preceeding with the reductions, we first state

a few equivalent characterization of Condition C1+, the proof of

which can be found, for instance, in [4, Lemma 9].

Proposition 4. Given an LEMM with (𝑆min, 𝑆max, 𝑆aff , 𝑛, N , q,
b), the following conditions are equivalent:
• Condition C1+ holds.
• maxQ∈Q 𝜚 ( |Q|) < 1.
• There exists v ∈ R𝑛≥1

such that v ≥ |Q|v + 1 for all Q ∈ Q.
• For all c ∈ R𝑛 , there exists v(c) ∈ R𝑛≥0

such that v(c) ≥ |Q|v(c)+
c for all Q ∈ Q.

The following lemma uses Proposition 4 to show that under

Condition C1+ (or under Conditions C1 and C2), the Condition C3

can be assumed without loss of generality. The main idea of the

reduction is to use the vector v(b) from Proposition 4 to contract

the row sum.

Lemma 1. Any LEMM under {C1+} can be reduced to an LEMM
under {C1+,C3} of the same size; any LEMM under {C1,C2} can be
reduced to an LEMM under {C1,C2,C3} of the same size.

Proof. Consider an LEMM given by (𝑆min, 𝑆max, 𝑆aff , 𝑛,N , q, b)
that satisfies Conditions C1 and C2. By Proposition 4, there exists

v = [𝑣1, · · · , 𝑣𝑛] ∈ R𝑛≥0
such that

v ≥ Qv + b for all Q ∈ Q, (7)

6
In the analysis of VI, Eq. (6) is exponential for 𝛾 close to 1.



and moreover, such a v can be found in polynomial time by solving

the linear program. Let Λ = [diag(v)]−1
. Then, x ∈ R𝑛 is the

solution of the original LEMM if and only if y = Λx is the solution

of the newLEMMgiven by (𝑆min, 𝑆max, 𝑆aff , 𝑛,N , q′,Λb), where q′𝑘 =

𝑣−1

𝑘
Λ−1q𝑘 , 𝑘 ∈ 𝑆aff .

Moreover, for all 𝑘 ∈ 𝑆aff , we have

(q′
𝑘
)⊤1 + (Λb)𝑘 = 𝑣−1

𝑘
(q⊤
𝑘
Λ−11 + 𝑏𝑘 )

≤ 𝑣−1

𝑘
(q⊤
𝑘
v + 𝑏𝑘 ) ≤ 𝑣−1

𝑘
𝑣𝑘 = 1 ,

(8)

where the last inequality follows from Eq. (7). Hence, the new

LEMM satisfies Condition C3. Hence, we have reduced the original

LEMM under {C1,C2} to an LEMM (of the same size) satisfying

{C1,C2,C3}.
Following similar steps, any LEMM under {C1+} can also be

reduced to an LEMM (of the same size) satisfying {C1+,C3}. □

Now, we are able to obtain the equivalence results between sub-

classes of LEMMs in Theorem 1. The detailed proof can be found

in Section B. The main proof steps of Item 1 of the theorem are to

assume “sum upto one” by Lemma 1, make both positive and nega-

tive copies for each variable, and rewrite the max operators as the

negative of min operator. The Item 2 of the theorem follows, again,

from Lemma 1 and the equivalence result from the literature [7].

Theorem 1 (Eqivalence between LEMM subclasses). We
obtain the following equivalence:

(1) There is a linear reduction between the LEMM decision prob-
lems under {C1+}, {C1+,C3}, {C1+,C4}, and {C1+,C3,C4}.

(2) There is a linear reduction between the LEMM decision prob-
lems under {C1,C2}, {C2,C3}, and {C1,C2,C3}.

Remark 3. From Item 1 in Theorem 1, we know that, for solving
LEMMs under Condition C1+, assuming Conditions C3 and C4 will not
make the problem easier. Therefore, we put the four linearly equivalent
LEMM subproblems {C1+}, {C1+,C3}, {C1+,C4}, and {C1+,C3,C4} in
the same row in Fig. 1.

From Item 2 in Theorem 1, we know that the LEMM under {C1,C2}
is equivalent to the LEMM under {C2,C3}, which implies the linear
equivalence between stochastic games and halting branching process.
Therefore, we put the three linearly equivalent LEMM subproblems
{C1,C2}, {C2,C3}, and {C1,C2,C3} in the same row in Fig. 1.

It should also be noted that our reductions are of linear size, which
implies any subexponential-time complexity result for SSGs (for in-
stance, [12]) holds for the class of LEMMs under {C1,C2} as well.

The equivalence results established in Theorem 1 have simplified

the complexity hierarchy of the LEMM decision problems in the

original study of [4]. This simplification leads to a clearer structure

containing only two new subclasses: the absolutely halting LEMMs

under {C1+} and the halting LEMMs under {C1}. These two key
subclasses are known to generalize SSGs yet still belong to the

complexity class UP ∩ coUP.

4 Algorithms for LEMM Subclasses
In Section 4.1 and Section 4.2, we study the algorithms for the

absolutely halting LEMMs and the halting LEMMs, respectively.

4.1 Algorithms for Absolutely Halting LEMMs
In this section, we study algorithms for LEMMs under Condi-

tion C1+. We first construct a counterexample showing that the

PI algorithm may diverge for this class due to the negative coef-

ficients. Then, we analyse the convergence of VI algorithm via a

new preconditioning technique, connecting the convergence rate

to spectral gap. Finally, we apply our new VI analysis approach
on the fundamental subproblems of SSGs (and MDPs). It leads to

surprising improvements of the long-standing runtime analyses of

VI and PI, which is a key result of this work.

Example 1 (Divergence of PI). Consider the LEMM given by:

𝑥1 = max{𝑥4, 𝑥5},
𝑥2 = max{𝑥6, 𝑥7},
𝑥3 = max{𝑥8, 𝑥9},
𝑥4 = −0.2𝑥2 + 0.2𝑥3 + 0.25,

𝑥5 = 0.3𝑥1 − 0.6𝑥3 + 0.25,

𝑥6 = −0.5𝑥1 + 0.25,

𝑥7 = 0.3𝑥1 + 0.1𝑥2 − 0.3𝑥3 + 0.25,

𝑥8 = −0.2𝑥1 + 0.4𝑥2 + 0.3,

𝑥9 = −0.7𝑥2 + 0.3𝑥3 + 0.3.

The above LEMM satisfies Conditions C1+, C3 and C4. Consider the
algorithm PImax(Q(0)

max
) with

Q(0)
max

= [e4, e6, e8]⊤,
then

Q(1)
max

= 𝜋max (xmax (Q(0)max
)) = [e4, e7, e8]⊤,

Q(2)
max

= 𝜋max (xmax (Q(1)max
)) = [e4, e7, e9]⊤,

Q(3)
max

= 𝜋max (xmax (Q(2)max
)) = [e5, e7, e9]⊤,

Q(4)
max

= 𝜋max (xmax (Q(3)max
)) = [e5, e7, e8]⊤,

Q(5)
max

= 𝜋max (xmax (Q(4)max
)) = [e4, e7, e8]⊤,

Q(6)
max

= 𝜋max (xmax (Q(5)max
)) = [e4, e6, e8]⊤,

· · · · · ·
The above algorithm enters a loop.

Next, we show that the VI algorithm still converges under Con-

dition C1+. For the SSG subclass, the classic analysis of VI assumes

starting from a lower bound (or an upper bound) of the solution,
and then shows that the sequence monotonically increases (or

decreases) and converges to the solution, as stated in Item 2 in

Proposition 3. For LEMMs under Condition C1+, however, without

non-negativity (Condition C2), the VI iterates are not necessarily
monotonic. Even worse, the classic halting conditioning 𝛾 for SSGs

(cf. Eq. (5)) is not well-defined for the generalized LEMMs, as shown

in the following example:

Example 2 (Ill-defined classic conditioning). Consider for
instance Q = {Q} with the matrix

Q =

[
0.5 0.7

0 0.7

]
whose spectral radius 𝜚 (Q) = 0.7 < 1, yet we have 𝛾2 = ∥Q21∥∞ =

1.49 > 1.



Hence, we need a different convergence analysis for VI algorithm
under Condition C1+. To this end, we propose a new analysis of VI
with a novel preconditioning technique.

Preconditioning. We define a new halting conditioning

𝛾 ≜ max

Q∈Q
𝜚 ( |Q|) < 1, (9)

and refer to (1 − 𝛾) as spectral gap.
For any real number 𝛼 ∈ (0, 1), let

𝛾 (𝛼 ) ≜ 𝛾 + 𝛼 (1 − 𝛾) ∈ (𝛾, 1). (10)

Moreover, let v(𝛼 ) ∈ R𝑛≥0
such that

v(𝛼 ) ≜ inf

{
v ∈ R𝑛≥0

| 𝛾 (𝛼 )v ≥ |Q|v+1, for all Q ∈ Q
}
, (11)

which is well defined in view of Proposition 4. Then, let

Λ(𝛼 ) ≜ [diag(v(𝛼 ) )]−1 . (12)

The following lemma shows some useful properties of the new

conditionings we introduced, as well as their relations to the classic

SSG conditioning 𝛾 (cf. Eq. (5)).

Lemma 2. Consider an LEMM with (𝑆min, 𝑆max, 𝑆aff , 𝑛, N , q, b)
under Condition C1+. Let 𝛼 ∈ (0, 1). The following properties hold:

(1) 1 − 𝛾 (𝛼 ) = (1 − 𝛼) (1 − 𝛾);
(2) ∥Λ(𝛼 )Q(Λ(𝛼 ) )−1∥∞ ≤ 𝛾 (𝛼 ) , for all Q ∈ Q;
(3)



Λ(𝛼 ) (I − Q)−1 (Λ(𝛼 ) )−1




∞ ≤

1

1−𝛾 (𝛼 ) , for all Q ∈ Q;
(4) Under Condition C2, we have 𝛾 ≤ 𝛾 ;
(5) Suppose all input numbers are rationals. Under Conditions C2

and C3, we have ∥v(𝛼 ) ∥∞ ≤ 𝛼−𝑛𝐷𝑛𝑛(𝛾 (𝛼 ) + 1)𝑛−1.

Proof. (1) 1 − 𝛾 (𝛼 ) = 1 − 𝛾 − 𝛼 (1 − 𝛾) = (1 − 𝛼) (1 − 𝛾).
(2) For all Q ∈ Q, we have for all 𝑖 ∈ [𝑛],

𝑛∑︁
𝑗=1

(Λ(𝛼 ) |Q|
(
Λ(𝛼 )

)−1)𝑖, 𝑗 =
1

𝑣
(𝛼 )
𝑖

( 𝑛∑︁
𝑗=1

|Q|𝑖, 𝑗𝑣
(𝛼 )
𝑗

)
≤ 1

𝑣
(𝛼 )
𝑖

(𝛾 (𝛼 )𝑣 (𝛼 )
𝑖
) = 𝛾 (𝛼 ) ,

and therefore, ∥Λ(𝛼 )Q
(
Λ(𝛼 )

)−1∥∞ ≤ 𝛾 (𝛼 ) .
(3) For all Q ∈ Q, we have

Λ(𝛼 ) (I − Q)−1 (Λ(𝛼 ) )−1




∞ ≤

∞∑︁
𝑘=0



Λ(𝛼 )Q𝑘 (Λ(𝛼 ) )−1




∞

=

∞∑︁
𝑘=0



(Λ(𝛼 )Q(Λ(𝛼 ) )−1
)𝑘


∞ ≤

∞∑︁
𝑘=0



Λ(𝛼 )Q(Λ(𝛼 ) )−1



𝑘
∞

≤
∞∑︁
𝑘=0

(𝛾 (𝛼 ) )𝑘 =
1

1 − 𝛾 (𝛼 )
.

(4) Under Condition C2, by the definitions of 𝛾 and 𝛾 , we have

the following inequalities

𝛾 = max

Q∈Q
𝜚 (Q) ≤ max

Q∈Q
∥Q𝑛 ∥

1

𝑛
∞ ≤ 𝛾 .

(5) Under Condition C2, by the definition of v(𝛼 ) , there exists
Q(𝛼 ) ∈ Q such that

𝛾 (𝛼 )v(𝛼 ) = Q(𝛼 )v(𝛼 ) + 1.

Then, we have

∥v(𝛼 ) ∥∞ =


(𝛾 (𝛼 ) I − Q(𝛼 ) )−1




∞

=
��
det(𝛾 (𝛼 ) I − Q(𝛼 ) )

��−1∥M(𝛼 ) ∥∞
≤
��
det(𝛾 (𝛼 ) I − Q(𝛼 ) )

��−1 · 𝑛 · max

1≤𝑖, 𝑗≤𝑛

��𝑀 (𝛼 )
𝑖 𝑗

��. (13)

whereM(𝛼 ) =
(
𝑀
(𝛼 )
𝑖 𝑗

)
∈ R𝑛×𝑛 denote the adjugatematrix of

(
𝛾 (𝛼 ) I−

Q(𝛼 )
)
.

Under Condition C3, we have for all 1 ≤ 𝑖, 𝑗 ≤ 𝑛,��𝑀 (𝛼 )
𝑖 𝑗

�� = ��
det

(
(𝛾 (𝛼 ) I − Q(𝛼 ) )− 𝑗𝑖

) �� ≤ (𝛾 (𝛼 ) + 1)𝑛−1 . (14)

Moreover, we have��
det(𝛾 (𝛼 ) I − Q(𝛼 ) )

�� ≥ 𝛼𝑛 ��det(I − Q(𝛼 ) )
�� ≥ 𝛼𝑛𝐷−𝑛 . (15)

Finally, the desired inequality follows fromplugging Eqs. (14) and (15)

into Eq. (13). □

We are now ready to show a key lemma for our convergence

analysis of VI. In particular, with the new conditioning in Eqs. (9)

to (12), we can show the contraction of value iteration operator in

one step under the Λ(𝛼 ) -preconditioned norm, with which we can

establish the convergence result of VI starting from an arbitrary
point.

Lemma 3 (One-step contraction of 𝜐 (·)). Consider an LEMM
with (𝑆min, 𝑆max, 𝑆aff , 𝑛,N , q, b) under Condition C1+. Let 𝛼 ∈ (0, 1).
For all x, y ∈ R𝑛 ,

∥Λ(𝛼 ) (𝜐 (x) − 𝜐 (y))∥∞ ≤ 𝛾 (𝛼 ) ∥Λ(𝛼 ) (x − y)∥∞ .

Proof. For all x, y ∈ R𝑛 , let𝜐 (x) = Q(x)x+b and𝜐 (y) = Q(y)y+
b, where Q(x) ,Q(y) ∈ Q. Then, for all Q ∈ Q, we have

Q(x)
𝑖,· x ≤ Q𝑖,·x , Q(y)

𝑖,· y ≤ Q𝑖,·y , for all 𝑖 ∈ 𝑆min , and

Q(x)
𝑗,· x ≥ Q𝑗,·x , Q(y)

𝑗,· y ≥ Q𝑗,·y , for all 𝑗 ∈ 𝑆max .

Construct the matrix Q(x,y) ∈ Q as follows: (i) take the rows corre-

sponding to min variables from Q(y) ; (ii) take the rows correspond-
ing to max variables from Q(x) ; and (iii) take the remaining rows as

Qaff . That is: Q
(x,y)
𝑖,· = Q(y)

𝑖,· for 𝑖 ∈ 𝑆min; Q
(x,y)
𝑗,· = Q(x)

𝑗,· for 𝑗 ∈ 𝑆max;

and Q(x,y)
𝑘,· = Q(x)

𝑘,· = Q(y)
𝑘,· for 𝑘 ∈ 𝑆aff .

Then, we have

Λ(𝛼 ) (𝜐 (x) − 𝜐 (y)) = Λ(𝛼 ) ((Q(x)x + b) − (Q(y)y + b))

= Λ(𝛼 ) (Q(x)x − Q(y)y)
(∗)
≥ Λ(𝛼 )Q(x,y) (x − y)

≥ −∥Λ(𝛼 )Q(x,y) (x − y)∥∞
= −∥Λ(𝛼 )Q(x,y)

(
Λ(𝛼 )

)−1

Λ(𝛼 ) (x − y)∥∞
≥ −∥Λ(𝛼 )Q(x,y)

(
Λ(𝛼 )

)−1∥∞∥Λ(𝛼 ) (x − y)∥∞
(∗∗)
≥ −𝛾 (𝛼 ) ∥Λ(𝛼 ) (x − y)∥∞ ,

(16)

where (*) follows from the construction of Q(x,y) and (**) follows

from Item 2 in Lemma 2.

Similarly, we can show that for all x, y ∈ R𝑛 ,

Λ(𝛼 ) (𝜐 (x) − 𝜐 (y)) ≤ 𝛾 (𝛼 ) ∥Λ(𝛼 ) (x − y)∥∞ .



Therefore, we have

∥Λ(𝛼 ) (𝜐 (x) − 𝜐 (y))∥∞ ≤ 𝛾 (𝛼 ) ∥Λ(𝛼 ) (x − y)∥∞ ,
for all x, y ∈ R𝑛 . □

Finally, we concludewith the results for absolutely halting LEMMs

in the following theorem.

Theorem 2 (Analyses for LEMM under {C1+}). Consider an
LEMM with (𝑆min, 𝑆max, 𝑆aff , 𝑛,N , q, b) under Condition C1+. Let x∗

be its unique solution.
(1) PImax or PImin may not converge.
(2) Let x(0) ∈ R𝑛 be any given point. The following assertions hold

for the iterates (x(𝑡 ) )𝑡 ∈Z≥0
in VI(x(0) ):

(a) For all 𝑡 ∈ Z≥0 and for all 𝛼 ∈ (0, 1), we have

∥Λ(𝛼 ) (x(𝑡 ) − x∗)∥∞ ≤ 𝛾 (𝛼 ) ∥Λ(𝛼 ) (x(𝑡−1) − x∗)∥∞
≤ · · · ≤ (𝛾 (𝛼 ) )𝑡 ∥Λ(𝛼 ) (x(0) − x∗)∥∞ .

(b) Suppose all input numbers are rationals. There exists

𝑡 < inf

𝛼∈ (0,1)

1

1 − 𝛾 (𝛼 )
[
𝑛 log(2𝐷) + log(2∥Λ(𝛼 ) (x(0) − x∗)∥∞)

+ log ∥v(𝛼 ) ∥∞
]
+ 1 ,

such that x(𝑡 ) is an 𝜀∗-accurate solution.

Proof. (1) follows from the counterexample in Example 1.

(2) follows from Lemma 3. □

Remark 4. On the one hand, Item 1 in Theorem 2 shows that the
classic PI algorithm diverges for absolutely halting LEMMs. Compared
to Item 1 in Proposition 3, it also indicates that the absolutely halting
LEMM seems to be a different problem class from SSGs.

On the other hand, Item 2 shows the connection between the spec-
tral gap (1 − 𝛾) and the convergence rate of VI for absolutely halting
LEMMs, significantly generalizing the convergence result from SSGs.
We also remark that it is well known in the context of Markov chains
that the spectral gap determines mixing time, but to our knowledge,
this relation has not been extended to the settings of MDPs or SSGs.

In Theorem 2, we obtain a new analysis of value iteration that

generalizes the convergence proof for SSGs (under {C1,C2,C3})
to absolutely halting LEMMs (under {C1+}). Next, we answer the
following natural question: if limited to the well-studied setting of

SSGs (or even MDPs), how is our new analysis compared to the

classic result of Proposition 3?

New analysis for stochastic games
In this section, we discuss our new algorithmic results in the con-

text of stochastic games (and eveh MDPs). First, we state our new

analysis of VI applied back to SSGs, and demonstrate how it refines

the existing analysis.

Corollary 3 (New VI analysis for SSGs). Consider an LEMM
with (𝑆min, 𝑆max, 𝑆aff , 𝑛, N , q, b) under conditions {C1,C2,C3}. Let
x(0) ∈ [0, 1]𝑛 be any given point and let (x(𝑡 ) )𝑡 ∈Z≥0

be the iterates
in VI(x(0) ). Suppose all input numbers are rationals. There exists

𝑡 = O
( 𝑛

1 − 𝛾 log(2𝐷)
)

such that x(𝑡 ) is an 𝜀∗-accurate solution. Thus, VI is a polynomial
time algorithm when 𝛾 is bounded away from 1.

Proof. This is implied by Item 2 in Theorem 2 and Item 5 in

Lemma 2. □

Example 3 (𝛾 improves 𝛾 ). For every 𝑛 ∈ Z>1, let

Q(𝑛) =

©­­­­­­­­­­«

𝛿 1 − 𝛿 0 . . . . . . 0

0 𝛿 1 − 𝛿 0 . . . 0
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. 0
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.
.
.

.

.

.
. . .

. . .
. . . 0

0 . . . . . . 0 𝛿 1 − 𝛿
0 . . . . . . . . . 0 𝛿

ª®®®®®®®®®®¬
∈ R𝑛×𝑛 .

We have
1 − 𝜚 (Q(𝑛)) = 1 − 𝛿 .

Moreover, we have

∥(Q(𝑛))𝑛 ∥∞ =




𝑛−1∑︁
𝑘=0

(
𝑛

𝑘

)
𝛿𝑛−𝑘 (1 − 𝛿)𝑘 (S(𝑛))𝑘





∞

=

𝑛−1∑︁
𝑘=0

(
𝑛

𝑘

)
𝛿𝑛−𝑘 (1 − 𝛿)𝑘

= 1 − (1 − 𝛿)𝑛 ,
and then,

1 − ∥(Q(𝑛))𝑛 ∥
1

𝑛
∞ = 1 − (1 − (1 − 𝛿)𝑛) 1

𝑛

= 1 − exp

( 1

𝑛
ln(1 − (1 − 𝛿)𝑛)

)
≤ − 1

𝑛
ln(1 − (1 − 𝛿)𝑛)

≤ 1

𝑛
· (1 − 𝛿)

𝑛

1 − (1 − 𝛿)𝑛 ,

where the last inequality follows from− ln(1−𝑥) ≤ 𝑥
1−𝑥 for 𝑥 ∈ (0, 1).

Now, fixing 𝛿 = 0.5, we have

1 − ∥(Q(𝑛))𝑛 ∥
1

𝑛
∞ ≤

1

𝑛
· 0.5𝑛

1 − 0.5𝑛

≤ 1

𝑛 · (2𝑛 − 1) ,

and then,
1 − 𝜚 (Q(𝑛))

1 − ∥(Q(𝑛))𝑛 ∥
1

𝑛
∞

≥ 1

2

𝑛 · (2𝑛 − 1) .

Therefore, for Q(𝑛) = {Q(𝑛)} , we have (1−𝛾) is exponentially larger
than (1 − 𝛾).

Remark 5. In view of Item 4 in Lemma 2, the convergence rate in
Corollary 3 is consistently no worse than the classic O

(
𝑛

1−𝛾 log(2𝐷)
)

rate in Eq. (6) up to constants. Moreover, our new rate can be exponen-
tially faster, as demonstrated in Example 3. Our new analysis of VI,
based on the spectral gap, generalizes to absolutely halting LEMMs;
and perhaps surprisingly, it simultaneously yields improvements over
existing state-of-the-art analyses for well-studied subproblems. Let
us conclude with the new runtime result of VI: for both halting MDPs
and stochastic games with reachability objectives, VI is a polynomial
time algorithm (provided 𝛾 is bounded away from 1).



Now, we show a new analysis of PI for SSGs. This is obtained
by combining our new convergence rate of VI and a well-known

result from the literature—PI iterates move faster than VI iterates.

Proposition 5 ([5, 6, 8]). Consider an LEMM with (𝑆min, 𝑆max,
𝑆aff , 𝑛, N , q, b) under conditions {C1,C2,C3}. Let x∗ be its unique
solution, let Q(0)

max
∈ Qmax be any given max policy, let (x(𝑡 ) )𝑡 ∈Z≥0

be the iterates in PImax(Q(0)
max
), and let (x(𝑡 ) )𝑡 ∈Z≥0

be the iterates in
VI(x(0) ). For all 𝑡 ∈ Z≥0, the following assertions hold:

(1) x(𝑡 ) ≤ x(𝑡+1) ,
(2) x(𝑡 ) ≤ x∗, and
(3) x(𝑡 ) ≤ x(𝑡 ) .

Theorem 4 (New PI analysis for SSGs). Consider an LEMM
with (𝑆min, 𝑆max, 𝑆aff , 𝑛, N , q, b) under conditions {C1,C2,C3}. Let
Q(0)

max
∈ Qmax be any given max policy, and let (x(𝑡 ) )𝑡 ∈Z≥0

be the
iterates in PImax(Q(0)

max
). There exists

𝑡 = O
( 𝑚

1 − 𝛾 log

( 1

1 − 𝛾
) )

such that x(𝑡 ) is the solution. Similar assertion holds for PImin(Q(0)
min
)

for any given Q(0)
min
∈ Qmin. Thus, PI is a strongly polynomial-time

algorithm when 𝛾 is bounded away from 1.

Proof of Theorem 4. Let 𝛼 ∈ (0, 1) be a fixed constant. We

define the following reduced vector :

rQ = Λ(𝛼 ) (x∗ − Qx∗ − b), for all Q ∈ Q .

If rQ
(0)

= 0, then x(0) is the solution, and the theorem trivially holds.

Now, let us assume rQ
(0)

≠ 0.
For all 𝑘 ∈ Z≥0, since x(𝑘 ) = xmax (Q(𝑘 )max

), let Q(𝑘 ) ∈ Q such that

x(𝑘 ) = Q(𝑘 )x(𝑘 ) + b . (17)

For all 𝛼 ∈ (0, 1), we have

rQ
(𝑘 )

= Λ(𝛼 ) (x∗ − Q(𝑘 )x∗ − b) = Λ(𝛼 ) (I − Q(𝑘 ) ) (x∗ − x(𝑘 ) )

due to Eq. (17), and

x∗ − x(𝑘 ) ≥ 0

due to Item 2 in Proposition 5. Therefore,

−Λ(𝛼 )Q(𝑘 ) (x∗ − x(𝑘 ) ) ≤ rQ
(𝑘 ) ≤ Λ(𝛼 ) (x∗ − x(𝑘 ) ),

and in view of

∥Λ(𝛼 )Q(𝑘 ) (x∗ − x(𝑘 ) )∥∞
≤ ∥Λ(𝛼 )Q(𝑘 ) (Λ(𝛼 ) )−1∥∞ · ∥Λ(𝛼 ) (x∗ − x(𝑘 ) )∥∞
≤ 𝛾 (𝛼 ) ∥Λ(𝛼 ) (x∗ − x(𝑘 ) )∥∞
≤ ∥Λ(𝛼 ) (x∗ − x(𝑘 ) )∥∞,

we have

∥rQ(𝑘 ) ∥∞ ≤ ∥Λ(𝛼 ) (x∗ − x(𝑘 ) )∥∞ .

Let us consider an auxiliary sequence (x(𝑡 ) )𝑘𝑡=0
as the iterates in

VI(x(0) ). Then, we have

∥rQ(𝑘 ) ∥∞ ≤ ∥Λ(𝛼 ) (x∗ − x(𝑘 ) )∥∞
(∗)
≤ ∥Λ(𝛼 ) (x∗ − x(𝑘 ) )∥∞

(∗∗)
≤ (𝛾 (𝛼 ) )𝑘 ∥Λ(𝛼 ) (x∗ − x(0) )∥∞
= (𝛾 (𝛼 ) )𝑘 ∥Λ(𝛼 ) (x∗ − x(0) )∥∞

≤ (𝛾 (𝛼 ) )𝑘 ∥Λ(𝛼 ) (I − Q(0) )−1 (Λ(𝛼 ) )−1∥∞∥rQ
(0) ∥∞

(∗∗∗)
≤ (𝛾 (𝛼 ) )𝑘

1 − 𝛾 (𝛼 )
∥rQ(0) ∥∞,

where (*) follows from Item 3 in Proposition 5, (**) follows from

Item 2 in Theorem 2, and (***) follows from Item 3 in Lemma 2.

Let 𝑠0 ∈ arg max𝑖∈[𝑛] |r
Q(0)
𝑖
|. For all

𝑘 ≥
⌈

log
1/𝛾 (𝛼 )

( 1

1 − 𝛾 (𝛼 )
)⌉

≜ 𝐾,

we have

|rQ
(𝑘 )

𝑠0
| ≤ ∥rQ(𝑘 ) ∥∞ ≤

(𝛾 (𝛼 ) )𝑘

1 − 𝛾 (𝛼 )
∥rQ(0) ∥∞ < ∥rQ(0) ∥∞ = |rQ

(0)
𝑠0
| ,

and thus,

Q(𝑘 )𝑠0,· ≠ Q(0)𝑠0,· .

Therefore, if x(0) is not the solution, then Q(0) contains a row Q(0)𝑠0,·
that will be eliminated from any Q(𝑘 )𝑠0,· where 𝑘 ≥ 𝐾 .

Finally, we can repeat the same argument for x(0) , x(𝐾 ) , x(2𝐾 ) ,
· · · There are at most𝑚 − 𝑛1 − 𝑛2 row choices to eliminate, and

therefore, there exists

𝑡 ≤ (𝑚 − 𝑛1 − 𝑛2) · 𝐾

= O
( 𝑚

1 − 𝛾 log

( 1

1 − 𝛾
) )

such that x(𝑡 ) is the solution. □

Finally, we state an immediate consequence of Theorem 4 for

stochastic games with discounted-sum objectives (while more detail

of the discounted-sum games are deferred to Section C):

Corollary 5 (New PI analysis for discounted-sum games).

Consider a two-player turn-based zero-sum stochastic game with
discounted-sum objective where the discount factor𝛾 < 1. Let𝑚 be the
number of actions. Then, PI is a strongly polynomial time algorithm
that converges in no more than O

(
𝑚

1−𝛾 log( 1

1−𝛾 )
)
iterations.

Remark 6. We give a technical remark on Theorem 4 and Corol-
lary 5. The proof generally follows the framework of [8, 16, 20]. How-
ever, our analysis, based on reduced vector, is more general and stream-
lined. On the one hand, for stochastic games with discounted-sum
objectives, while the state-of-the-art strongly polynomial time bound
in [8, Theorem 7.5] is given by

𝑡 = O
( 𝑚

1 − 𝛾 log

( 𝑛

1 − 𝛾
) )
,

our result in Corollary 5 improves it by removing the log𝑛 factor.
On the other hand, we extend the strongly polynomial time com-
plexity result for the first time from discounted-sum objectives to
reachability objectives. Let us conclude with the new complexity
result of the problem classes: for both halting MDPs and stochastic



games with reachability objectives, PI is a strongly polynomial time
algorithm (provided 𝛾 is bounded away from 1).

4.2 Algorithms for Halting LEMMs
In this section, we study the algorithms for LEMMs under Condi-

tion C1. We first construct a counterexample showing that the VI
algorithm can also diverge for this class.

Example 4 (Divergence of VI). Consider the LEMM given by:

𝑥1 = max{𝑥3, 𝑥4},
𝑥2 = max{𝑥5, 𝑥6},
𝑥3 = −0.9𝑥1 + 1.8𝑥2 − 1.5,

𝑥4 = 0.5𝑥1 + 1.5𝑥2 − 1.5,

𝑥5 = −0.5𝑥1 − 1.0,

𝑥6 = −0.25𝑥1 − 0.25𝑥2 − 1.0.

The above LEMM satisfies Conditions C1, C3 and C4. In particular,
Condition C1 can be verified by noting the following facts: (i) the
spectral radius of Q is less than 1, for all Q ∈ Q; and (ii) the matrices
(Q + I) and (Q − I) are both non-singular, for all Q ∈ convQ.

Consider the algorithm VI(x(0) ) with

x(0) = [3/7, 5/7,−3/5,−3/14,−17/14,−9/7]⊤,

then

x(1) = 𝜐 (x(0) ) = [−3/14,−17/14,−3/5,−3/14,−17/14,−9/7]⊤,

x(2) = 𝜐 (x(1) ) = [−3/14,−17/14,−489/140,−24/7,−21/28,−9/14]⊤,

x(3) = 𝜐 (x(2) ) = [−24/7,−9/14,−489/140,−24/7,−21/28,−9/14]⊤,

x(4) = 𝜐 (x(3) ) = [−24/7,−9/14, 3/7,−117/28, 5/7, 1/56]⊤,

x(5) = 𝜐 (x(4) ) = [3/7, 5/7, 3/7,−117/28, 5/7, 1/56]⊤,

x(6) = 𝜐 (x(5) ) = [3/7, 5/7,−3/5,−3/14,−17/14,−9/7]⊤,
· · · · · ·

The above algorithm enters a loop.

Given that both PI and VI can diverge, now we revisit a less

studied algorithm for stochastic games, Simple Policy Iteration [13]

as well as its randomized variant.

(Randomized) Simple Policy Iteration. We consider Simple Policy

Iteration (SPI) as well as its randomized variant Randomized Simple

Policy Iteration (RandSPI). The pseudocodes of SPI and RandSPI are
given in Algorithm 3 and Algorithm 4, respectively. The SPI algo-
rithm runs iteratively: starting from certain choices of neighbors,

the algorithm finds the maximum index at which the corresponding

min or max equation is violated, and then updates the neighbor

choice at that index. The RandSPI algorithm runs recursively: when

there are 𝑘 min and max variables, the algorithm iterates overN(𝑘)
for the neighbor choice of the 𝑘th min or max variable, and then

recursively solves the new LEMM with (𝑘 − 1) min and max vari-

ables. For RandSPI, we require the order I(𝑘) within each recursive

call to be chosen independently and uniformly at random.

Theorem 6 (Analyses for LEMM under {C1}). Consider an
LEMM with (𝑆min, 𝑆max, 𝑆aff , 𝑛, N , q, b) under Condition C1.

(1) Neither PI nor VI converges.

Algorithm 3 Simple Policy Iteration SPI(I)
Require: I(𝑖) is a permutation of N(𝑖), for all 𝑖 ∈ [𝑛1 + 𝑛2].
1: Let Q← [eI(1) (1) , · · · , eI(𝑛1+𝑛2 ) (1) , q𝑛1+𝑛2+1, · · · , q𝑛]⊤
2: Let ℓ ← (1, · · · , 1) ∈ [|N (1) |] × · · · × [|N (𝑛1 + 𝑛2) |]
3: loop
4: x← (I − Q)−1b
5: 𝛤 ←

{
𝑖 ∈ 𝑆min | ∃𝑘 ∈ N (𝑖) such that 𝑥𝑘 < 𝑥𝑖

}
∪
{
𝑗 ∈

𝑆max | ∃𝑙 ∈ N ( 𝑗) such that 𝑥𝑙 > 𝑥 𝑗
}

6: if 𝛤 is empty then
7: return x
8: else
9: 𝑘 ← max 𝛤

10: if ℓ𝑘 ≠ |N (𝑘) | then
11: ℓ𝑘 ← ℓ𝑘 + 1

12: else
13: ℓ𝑘 ← 1

14: end if
15: Q𝑘,· ← e⊤I(𝑘 ) (ℓ𝑘 )
16: end if
17: end loop

Algorithm 4 Randomized Simple Policy Iteration

RandSPI(𝑆min, 𝑆max, 𝑆aff , 𝑛,N , q, b)
1: if 𝑆min ∪ 𝑆max is non-empty then
2: Let 𝑘 ← |𝑆min | + |𝑆max |
3: Get a (new) uniform random permutation I(𝑘) of N(𝑘)
4: for 𝑖 = 1, · · · , |N (𝑘) | do
5: if 𝑘 ∈ 𝑆max then
6: 𝑆 ′

max
← 𝑆max \ {𝑘}

7: else
8: 𝑆 ′

min
← 𝑆min \ {𝑘}

9: end if
10: 𝑆 ′

aff
← 𝑆aff ∪ {𝑘}

11: Let q′ such that

q′𝑗 =

{
eI(𝑘 ) (𝑖 ) , 𝑗 = 𝑘,

q𝑗 , 𝑘 + 1 ≤ 𝑗 ≤ 𝑛.
12: x← RandSPI(𝑆 ′

min
, 𝑆 ′

max
, 𝑆 ′

aff
, 𝑛,N , q′, b)

13: if 𝑘 ∈ 𝑆max and 𝑥𝑘 = max𝑗∈N(𝑘 ) 𝑥 𝑗 then
14: Break the loop and return x
15: else if 𝑘 ∈ 𝑆min and 𝑥𝑘 = min𝑗∈N(𝑘 ) 𝑥 𝑗 then
16: Break the loop and return x
17: end if
18: end for
19: else
20: Let Q← [q1, · · · , q𝑛]⊤
21: return (I − Q)−1b
22: end if

(2) LetI(𝑖) be any permutation ofN(𝑖), for all 𝑖 ∈ [𝑛1+𝑛2]. Then,
SPI(I) returns the solution x∗ in nomore thanΠ𝑖∈𝑆

min
∪𝑆max

|N (𝑖) |
iterations.



(3) RandSPI(𝑆min, 𝑆max, 𝑆aff , 𝑛,N , q, b) returns the solution x∗ in
no more than

Π𝑖∈𝑆
min
∪𝑆max

( |N (𝑖) | + 1)
2
𝑛1+𝑛2

recursive calls in expectation.

Proof. (1) The divergence of PI and VI follows from Examples 1

and 4 respectively.

(2) We prove that the algorithm returns a feasible solution in

no more than Π𝑖∈𝑆
min
∪𝑆max

|N (𝑖) | iterations by induction on 𝑛1 +𝑛2,

the number of min and max variables.

(Base) For 𝑛1 +𝑛2 = 0, due to Condition C1, (I −Q) is invertible, so
the algorithm returns the feasible solution of the linear system in

one iteration.

(Induction) Assume the algorithm returns a feasible solution in no

more than Π𝑖∈𝑆
min
∪𝑆max

|N (𝑖) | iterations if there are (𝑛1 + 𝑛2 − 1)
min and max variables in an LEMM. Then, consider the LEMM

with (𝑛1 + 𝑛2) min and max variables satisfying Condition C1,

where there is a unique solution x∗. Let 𝑙 be the smallest number in

[|N (𝑛1 + 𝑛2) |] such that x∗𝑛1+𝑛2

= 𝑥∗I (𝑛1+𝑛2 ) (𝑙 ) . We notice that the

loop will not break before ℓ𝑘 being set to 𝑙 : if a vector x satisfies

the first (𝑛1 + 𝑛2 − 1) equations, the (𝑛1 + 𝑛2)-th equation will be

violated (otherwise, x∗ would not be the unique solution of the

original LEMM). Then, consider ℓ𝑘 being set to 𝑙 . By induction, a

vector x satisfying the first (𝑛1 +𝑛2 − 1) equations will be obtained,
and this x = x∗ will be returned as the feasible solution of the

original LEMM (otherwise, one can construct a new LEMM by

replacing the (𝑛1 + 𝑛2)th equation by 𝑥𝑛1+𝑛2
= 𝑥𝑙 , which has two

different feasible solutions x and x∗). Moreover, the number of

iterations is upper bounded by

𝑙 · Π𝑖∈[𝑛1+𝑛2−1] |N (𝑖) | ≤ Π𝑖∈[𝑛1+𝑛2 ] |N (𝑖) |

from the above analysis.

(3) Since there exists a solution in the LEMM, for each 𝑘 there

exists an index 𝑖 ∈ |N (𝑘) | from which the algorithm will return

the feasible solution. Let T (𝑘) denote the number of recursive calls

for an LEMM with 𝑘 min and max variables. Since the order I(𝑘)
in Algorithm 4 is chosen independently and uniformly at random,

we get the following recursion:

E [T (𝑘)] ≤
|N (𝑘 ) |∑︁
𝑗=1

𝑗

|N (𝑘) | ·E [T (𝑘 − 1)] = |N (𝑘) | + 1

2

E [T (𝑘 − 1)] .

Therefore, the total number of recursive calls is upper bounded by:

E [T (𝑛1 + 𝑛2)] ≤
Π𝑖∈𝑆

min
∪𝑆max

( |N (𝑖) | + 1)
2
𝑛1+𝑛2

.

□

Remark 7. In Items 1 and 2, we know that while classic algorithms
like PI and VI diverge, the less studied algorithm of SPI converges. We
also remark that due to a lower bound in [13] for halting MDPs, SPI
in the worst case has to go through all possible choices of neighbors
and makes exponentially many iterations.

In Item 3 of Theorem 6, the convergence rate of RandSPI shows
that it is in expectation exponentially faster than the brute force that
naively enumerates all Π𝑖∈𝑆

min
∪𝑆max

|N (𝑖) | possible neighbor choices
of min and max variables.

5 Discussions
Since all the problem classes {C1}, {C1+}, and {C1,C2} are in the

class of UP ∩ coUP, any strict separation between these classes

would imply P ≠ UP ∩ coUP and is, thus, notoriously difficult to

prove. However, the algorithmic studies in this paper reveal that the

classic algorithms (like policy iteration and value iteration) behave

very differently for these problem classes, which indicates that they

may have intrinsically different structures.

As one of the key results of this paper, we know that for LEMMs

under {C1+}, value iteration is a polynomital time algorithm when

𝛾 is bounded away from 1. It is an interesting open question whether

there exists a polynomial time algorithm for LEMMs under {C1} (pro-
vided 𝛾 bounded away from 1).

It is also known that a randomized subexponential-time algo-

rithm exists for SSGs [12] and, thus, for the LEMMs under {C1,C2}
following from the linear reduction (cf. Lemma 1). However, we do

not know whether this randomized subexponential upper bound

can be extended to the LEMMs under {C1} or under {C1+}. The
problem is that the analysis from Ludwig [12] relies heavily on

monotonicity, which does not hold anymore due to the negative

coefficients. Extending the subexponential upper bound or prov-

ing any exponential lower bound for LEMMs under {C1} or under
{C1+} is an interesting future direction.

Given an absolutely halting LEMM, it is not clear how to estimate

the new conditioning 𝛾 efficiently. This is indeed a very non-trivial

problem for the field of spectral analysis. Since the spectral radius

can be irrational, most of the existing numerical schemes are not in

polynomial time, not even for the fundamental classes of Markov

chains. We propose a simple binary search method in Section D,

and leave the more thorough numerical analysis as a fruitful future

direction.
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A Checking halting condition is coNP-complete
It is proven in [4] that checking Condition C1 is coNP-hard. In order

to show that checking Condition C1 is coNP-complete, it sufficies

to prove its coNP membership.

Assume Condition C1 does not hold. Let Q(𝑎) ∈ Q. If 𝜚 (Q(𝑎) ) ≥
1, we already have a polynomial certificateQ(𝑎) . Now, let us assume

𝜚 (Q(𝑎) ) < 1. Since Condition C1 does not hold, there exists a matrix

in conv(Q) such that it has an eigenvalue 1. Thus, there exists a

matrix Q ∈ convQ such that (I − Q) is a singular matrix–that is,

a linear combination of (I − Q)’s rows equals 0. Therefore, one
can use the signs of the coefficients in the linear combination as a

certificate, which can be checked by linear program in polynomial

time.

B Missing proof
Proof of Theorem 1. (1) FromLemma 1, an LEMMunder {C1+}

can be reduced to an LEMM under {C1+,C3}. Now, we show that

an LEMM under {C1+,C3} can be further reduced to an LEMM

under {C1+,C3,C4}, which generally follows the reduction in [4,

Appendix A.4].

Consider an LEMM with (𝑆min, 𝑆max, 𝑆aff , 𝑛, N , q, b) under Con-
ditions C1+ and C3. Define, for 𝑖 ∈ [1, 𝑛1],

N ′ (𝑖) = {𝑙 + 2𝑛 | 𝑙 ∈ N (𝑖) ∩ ([1, 𝑛1] ∪ [𝑛1 + 𝑛2 + 1, 𝑛])} ∪
{𝑙 + 𝑛 | 𝑙 ∈ N (𝑖) ∩ [𝑛1 + 1, 𝑛1 + 𝑛2]} ,

for 𝑖 ∈ [𝑛1 + 1, 𝑛1 + 𝑛2],

N ′ (𝑖) = {𝑙 + 𝑛 | 𝑙 ∈ N (𝑖) ∩ ([1, 𝑛1] ∪ [𝑛1 + 𝑛2 + 1, 𝑛])} ∪
{𝑙 + 2𝑛 | 𝑙 ∈ N (𝑖) ∩ [𝑛1 + 1, 𝑛1 + 𝑛2]} ,

and for 𝑘 ∈ [𝑛2 + 1, 𝑛],

q̄𝑘 =



O(𝑛+𝑛1 )×𝑛1
O(𝑛+𝑛1 )×𝑛2

O(𝑛+𝑛1 )×(𝑛−𝑛1−𝑛2 )
O𝑛2×𝑛1

I𝑛2
O𝑛2×(𝑛−𝑛1−𝑛2 )

O(𝑛−𝑛1−𝑛2 )×𝑛1
O(𝑛−𝑛1−𝑛2 )×𝑛2

O(𝑛−𝑛1−𝑛2 )×(𝑛−𝑛1−𝑛2 )
I𝑛1

O𝑛1×𝑛2
O𝑛1×(𝑛−𝑛1−𝑛2 )

O𝑛2×𝑛1
O𝑛2×𝑛2

O𝑛2×(𝑛−𝑛1−𝑛2 )
O(𝑛−𝑛1−𝑛2 )×𝑛1

O(𝑛−𝑛1−𝑛2 )×𝑛2
I𝑛−𝑛1−𝑛2


·q𝑘 .

We consider the following LEMM:
𝑥 ′𝑖 = min {𝑥 ′

𝑙
| 𝑙 ∈ N ′ (𝑖)}, 1 ≤ 𝑖 ≤ 𝑛1 + 𝑛2,

𝑥 ′
𝑘
= q̄⊤

𝑘
x′ + 𝑏𝑘 , 𝑛1 + 𝑛2 < 𝑘 ≤ 𝑛,

𝑥 ′
𝑙
= −𝑥 ′

𝑙−𝑛, 𝑛 < 𝑙 ≤ 2𝑛,

𝑥 ′𝑚 = 𝑥 ′𝑚−2𝑛, 2𝑛 < 𝑚 ≤ 3𝑛,

(18)

which satisfies Conditions C1+, C3 and C4. Then, x is a solution to

the original LEMM if and only if x′ =

x̃
−x̃
x̃

 is the solution to (18),

where

x̃ =


I𝑛1

O𝑛1×𝑛2
O𝑛1×(𝑛−𝑛1−𝑛2 )

O𝑛2×𝑛1
−I𝑛2

O𝑛2×(𝑛−𝑛1−𝑛2 )
O(𝑛−𝑛1−𝑛2 )×𝑛1

O(𝑛−𝑛1−𝑛2 )×𝑛2
I𝑛−𝑛1−𝑛2

 · x .
Therefore, the LEMM under {C1+,C3,C4} is as hard as the LEMM

under {C1+,C3}.
(2) Lemma 1 shows that the LEMMs under {C1,C2} and {C1,C2,C3}

are equivalent. Then, the claim follows immediately from [7, Lemma 8],

which shows the equivalence between the LEMMs under {C2,C3}
and {C1,C2,C3}. □

C Stochastic games with discounted-sum
objectives

Consider a two-player turn-based zero-sum stochastic games with

discounted-sum objectives where the discount factor 𝛾 < 1. Accord-

ing to the classic results [8, 15, 18], the game can be formualted as an

LEMM with (𝑆min, 𝑆max, 𝑆aff , 𝑛, N , q, b), where the following prop-

erties hold: (i) Conditions C2 and C3 are satisfied; (ii) N(𝑖) ⊆ 𝑆aff ,

for all 𝑖 ∈ 𝑆min ∪ 𝑆max; and (iii) q⊤
𝑘
1 = 𝛾 , for all 𝑘 ∈ 𝑆aff .

Due to the properties (i) and (iii), Condition C1 is trivially satis-

fied. Therefore, Corollary 5 follows directly from Theorem 4.

D A feasible method to estimate 𝛾
We propose a simple binary search method to estimate the new

halting conditioning 𝛾 introduced in Eq. (9).

Let us consider an absolutely halting LEMM. Let LP(𝛾) denote
the following system of linear inequalities:{

𝛾v ≥ |Q|v + 1, for all Q ∈ Q,
v ≥ 1.

Let 𝛾 (0) = 0 and 𝛾 (0) = 𝛾 . For all 𝑡 ≥ 0, let 𝛾 (𝑡 ) = 1

2
(𝛾 (𝑡 ) +𝛾 (𝑡 ) ), and

let

𝛾 (𝑡+1) =

{
𝛾 (𝑡 ) , if LP(𝛾 (𝑡 ) ) is feasible,
𝛾 (𝑡 ) , otherwise,

and

𝛾 (𝑡+1) =

{
𝛾 (𝑡 ) , if LP(𝛾 (𝑡 ) ) is not feasible,
𝛾 (𝑡 ) , otherwise.

Then, 𝛾 (𝑡 ) −𝛾 (𝑡 ) ≤ 2
−𝑡𝛾 . Moreover, in view of Proposition 4 and

Item 4 in Lemma 2, we have

𝛾 ∈ [𝛾 (𝑡 ) , 𝛾 (𝑡 ) ],
for all 𝑡 ≥ 1.
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