Monotone Near-Zero-Sum Games

Ruichen Luo¹ Sebastian U. Stich² Krishnendu Chatterjee¹

¹Institute of Science and Technology Austria (ISTA) 3400 Klosterneuburg, Austria

²CISPA Helmholtz Center for Information Security 66386 St. Ingbert, Germany

Oct 10, 2025 in St. Ingbert, Germany

Outline for section 1

- Introduction
- 2 New Class
- Algorithm and Analysis
 - Iterative Coupling Linearization
 - Convergence Analysis
- Application Examples
- 5 Numerical Experiments

Two-Person Nash Equilibrium Problem (NEP):

- ▶ Player 1: $\max_{\mathbf{x} \in X} u_1(\mathbf{x}, \mathbf{y})$; Player 2: $\max_{\mathbf{y} \in Y} u_2(\mathbf{x}, \mathbf{y})$.
- \triangleright X and Y are compact and convex; u_1 and u_2 are L-smooth on $X \times Y$.
- ▶ Nash equilibrium $(\mathbf{x}^*, \mathbf{y}^*) \in X \times Y$ s.t.

$$u_1(\mathbf{x}^*, \mathbf{y}^*) \ge u_1(\mathbf{x}, \mathbf{y}^*)$$
, for all $\mathbf{x} \in X$, $u_2(\mathbf{x}^*, \mathbf{y}^*) \ge u_2(\mathbf{x}^*, \mathbf{y})$, for all $\mathbf{y} \in Y$.

- \triangleright Operator $\mathcal{F}: Z \to Z$.
- ▶ (Weak) Solution $z^* \in Z$:

$$\langle \mathcal{F}(\mathbf{z}^*), \mathbf{z} - \mathbf{z}^* \rangle \ge 0$$
, for all $\mathbf{z} \in Z$.

- Minimization of smooth convex function g: $\mathcal{F} = \nabla g$
- ▶ NEP of concave games where u_1 (u_2) is concave in \mathbf{x} (\mathbf{y}):

$$\mathcal{F} = -\left[\nabla_{\mathsf{x}} u_1, \nabla_{\mathsf{y}} u_2\right]$$

Two-Person Nash Equilibrium Problem (NEP):

- ▶ Player 1: $\max_{\mathbf{x} \in X} u_1(\mathbf{x}, \mathbf{y})$; Player 2: $\max_{\mathbf{y} \in Y} u_2(\mathbf{x}, \mathbf{y})$.
- \blacktriangleright X and Y are compact and convex; u_1 and u_2 are L-smooth on $X \times Y$.
- ▶ Nash equilibrium $(\mathbf{x}^*, \mathbf{y}^*) \in X \times Y$ s.t.

$$u_1(\mathbf{x}^*, \mathbf{y}^*) \ge u_1(\mathbf{x}, \mathbf{y}^*), \text{ for all } \mathbf{x} \in X,$$

 $u_2(\mathbf{x}^*, \mathbf{y}^*) \ge u_2(\mathbf{x}^*, \mathbf{y}), \text{ for all } \mathbf{y} \in Y.$

- ightharpoonup Operator $\mathcal{F}\colon Z\to Z$.
- ightharpoonup (Weak) Solution $\mathbf{z}^* \in Z$:

$$\langle \mathcal{F}(\mathbf{z}^*), \mathbf{z} - \mathbf{z}^* \rangle \ge 0$$
, for all $\mathbf{z} \in Z$.

- Minimization of smooth convex function g: $\mathcal{F} = \nabla g$
- ▶ NEP of concave games where u_1 (u_2) is concave in \mathbf{x} (\mathbf{y}):

$$\mathcal{F} = -\left[\nabla_{\mathsf{x}} u_1, \nabla_{\mathsf{y}} u_2\right]$$

Two-Person Nash Equilibrium Problem (NEP):

- ▶ Player 1: $\max_{\mathbf{x} \in X} u_1(\mathbf{x}, \mathbf{y})$; Player 2: $\max_{\mathbf{y} \in Y} u_2(\mathbf{x}, \mathbf{y})$.
- \blacktriangleright X and Y are compact and convex; u_1 and u_2 are L-smooth on $X \times Y$.
- ▶ Nash equilibrium $(\mathbf{x}^*, \mathbf{y}^*) \in X \times Y$ s.t.

$$u_1(\mathbf{x}^*, \mathbf{y}^*) \ge u_1(\mathbf{x}, \mathbf{y}^*), \text{ for all } \mathbf{x} \in X,$$

 $u_2(\mathbf{x}^*, \mathbf{y}^*) \ge u_2(\mathbf{x}^*, \mathbf{y}), \text{ for all } \mathbf{y} \in Y.$

Variational Inequality Problem (VIP):

- ightharpoonup Operator $\mathcal{F}\colon Z\to Z$.
- ightharpoonup (Weak) Solution $z^* \in Z$:

$$\langle \mathcal{F}(\mathbf{z}^*), \mathbf{z} - \mathbf{z}^* \rangle \ge 0$$
, for all $\mathbf{z} \in Z$.

- ightharpoonup Minimization of smooth convex function $g \colon \mathcal{F} = \nabla_{\mathcal{E}}$
- ▶ NEP of concave games where u_1 (u_2) is concave in \mathbf{x} (\mathbf{y}):

 $\mathcal{F} = -\left[\nabla_{\mathbf{x}}u_1, \nabla_{\mathbf{y}}u_2\right].$

Two-Person Nash Equilibrium Problem (NEP):

- ▶ Player 1: $\max_{\mathbf{x} \in X} u_1(\mathbf{x}, \mathbf{y})$; Player 2: $\max_{\mathbf{y} \in Y} u_2(\mathbf{x}, \mathbf{y})$.
- \blacktriangleright X and Y are compact and convex; u_1 and u_2 are L-smooth on $X \times Y$.
- ▶ Nash equilibrium $(\mathbf{x}^*, \mathbf{y}^*) \in X \times Y$ s.t.

$$u_1(\mathbf{x}^*, \mathbf{y}^*) \ge u_1(\mathbf{x}, \mathbf{y}^*), \text{ for all } \mathbf{x} \in X,$$

 $u_2(\mathbf{x}^*, \mathbf{y}^*) \ge u_2(\mathbf{x}^*, \mathbf{y}), \text{ for all } \mathbf{y} \in Y.$

Variational Inequality Problem (VIP):

- ightharpoonup Operator $\mathcal{F}\colon Z\to Z$.
- ightharpoonup (Weak) Solution $z^* \in Z$:

$$\langle \mathcal{F}(\mathbf{z}^*), \mathbf{z} - \mathbf{z}^* \rangle \ge 0$$
, for all $\mathbf{z} \in Z$.

- ightharpoonup Minimization of smooth convex function $g \colon \mathcal{F} = \nabla_{\mathcal{E}}$
- ▶ NEP of concave games where u_1 (u_2) is concave in \mathbf{x} (\mathbf{y}):

 $\mathcal{F} = -\left[\nabla_{\mathbf{x}}u_1, \nabla_{\mathbf{y}}u_2\right].$

Two-Person Nash Equilibrium Problem (NEP):

- ▶ Player 1: $\max_{\mathbf{x} \in X} u_1(\mathbf{x}, \mathbf{y})$; Player 2: $\max_{\mathbf{y} \in Y} u_2(\mathbf{x}, \mathbf{y})$.
- \blacktriangleright X and Y are compact and convex; u_1 and u_2 are L-smooth on $X \times Y$.
- ▶ Nash equilibrium $(\mathbf{x}^*, \mathbf{y}^*) \in X \times Y$ s.t.

$$u_1(\mathbf{x}^*, \mathbf{y}^*) \ge u_1(\mathbf{x}, \mathbf{y}^*), \text{ for all } \mathbf{x} \in X,$$

 $u_2(\mathbf{x}^*, \mathbf{y}^*) \ge u_2(\mathbf{x}^*, \mathbf{y}), \text{ for all } \mathbf{y} \in Y.$

- ▶ Operator $\mathcal{F}: Z \to Z$.
- ▶ (Weak) Solution $\mathbf{z}^* \in Z$:

$$\langle \mathcal{F}(\mathbf{z}^*), \mathbf{z} - \mathbf{z}^* \rangle \ge 0$$
, for all $\mathbf{z} \in \mathcal{Z}$.

- Minimization of smooth convex function g: $\mathcal{F} = \nabla g$.
- ▶ NEP of concave games where u_1 (u_2) is concave in \mathbf{x} (\mathbf{y}):

$$\mathcal{F} = -\left[\nabla_{\mathbf{x}} u_1, \nabla_{\mathbf{y}} u_2\right].$$

Two-Person Nash Equilibrium Problem (NEP):

- ▶ Player 1: $\max_{\mathbf{x} \in X} u_1(\mathbf{x}, \mathbf{y})$; Player 2: $\max_{\mathbf{y} \in Y} u_2(\mathbf{x}, \mathbf{y})$.
- \blacktriangleright X and Y are compact and convex; u_1 and u_2 are L-smooth on $X \times Y$.
- ▶ Nash equilibrium $(\mathbf{x}^*, \mathbf{y}^*) \in X \times Y$ s.t.

$$u_1(\mathbf{x}^*, \mathbf{y}^*) \ge u_1(\mathbf{x}, \mathbf{y}^*), \text{ for all } \mathbf{x} \in X,$$

 $u_2(\mathbf{x}^*, \mathbf{y}^*) \ge u_2(\mathbf{x}^*, \mathbf{y}), \text{ for all } \mathbf{y} \in Y.$

- ▶ Operator $\mathcal{F}: Z \to Z$.
- ▶ (Weak) Solution $\mathbf{z}^* \in Z$:

$$\langle \mathcal{F}(\mathbf{z}^*), \mathbf{z} - \mathbf{z}^* \rangle \geq 0$$
, for all $\mathbf{z} \in Z$.

- Minimization of smooth convex function g: $\mathcal{F} = \nabla g$.
- ▶ NEP of concave games where u_1 (u_2) is concave in \mathbf{x} (\mathbf{y}):

$$\mathcal{F} = -\left[\nabla_{\mathbf{x}} u_1, \nabla_{\mathbf{y}} u_2\right].$$

Two-Person Nash Equilibrium Problem (NEP):

- ▶ Player 1: $\max_{\mathbf{x} \in X} u_1(\mathbf{x}, \mathbf{y})$; Player 2: $\max_{\mathbf{y} \in Y} u_2(\mathbf{x}, \mathbf{y})$.
- \blacktriangleright X and Y are compact and convex; u_1 and u_2 are L-smooth on $X \times Y$.
- ▶ Nash equilibrium $(\mathbf{x}^*, \mathbf{y}^*) \in X \times Y$ s.t.

$$u_1(\mathbf{x}^*, \mathbf{y}^*) \ge u_1(\mathbf{x}, \mathbf{y}^*)$$
, for all $\mathbf{x} \in X$, $u_2(\mathbf{x}^*, \mathbf{y}^*) \ge u_2(\mathbf{x}^*, \mathbf{y})$, for all $\mathbf{y} \in Y$.

- ightharpoonup Operator $\mathcal{F}\colon Z o Z$.
- ▶ (Weak) Solution $\mathbf{z}^* \in Z$:

$$\langle \mathcal{F}(\mathbf{z}^*), \mathbf{z} - \mathbf{z}^* \rangle \geq 0$$
, for all $\mathbf{z} \in Z$.

- Minimization of smooth convex function $g: \mathcal{F} = \nabla g$.
- ▶ NEP of concave games where u_1 (u_2) is concave in \mathbf{x} (\mathbf{y}):

$$\mathcal{F} = -\left[\nabla_{\mathbf{x}}u_1, \nabla_{\mathbf{y}}u_2\right].$$

Two-Person Nash Equilibrium Problem (NEP):

- ▶ Player 1: $\max_{\mathbf{x} \in X} u_1(\mathbf{x}, \mathbf{y})$; Player 2: $\max_{\mathbf{y} \in Y} u_2(\mathbf{x}, \mathbf{y})$.
- \blacktriangleright X and Y are compact and convex; u_1 and u_2 are L-smooth on $X \times Y$.
- ▶ Nash equilibrium $(\mathbf{x}^*, \mathbf{y}^*) \in X \times Y$ s.t.

$$u_1(\mathbf{x}^*, \mathbf{y}^*) \ge u_1(\mathbf{x}, \mathbf{y}^*)$$
, for all $\mathbf{x} \in X$, $u_2(\mathbf{x}^*, \mathbf{y}^*) \ge u_2(\mathbf{x}^*, \mathbf{y})$, for all $\mathbf{y} \in Y$.

- ightharpoonup Operator $\mathcal{F}\colon Z o Z$.
- ▶ (Weak) Solution $\mathbf{z}^* \in Z$:

$$\langle \mathcal{F}(\mathbf{z}^*), \mathbf{z} - \mathbf{z}^* \rangle \geq 0$$
, for all $\mathbf{z} \in Z$.

- Minimization of smooth convex function $g: \mathcal{F} = \nabla g$.
- ▶ NEP of concave games where u_1 (u_2) is concave in \mathbf{x} (\mathbf{y}):

$$\mathcal{F} = -\left[\nabla_{\mathbf{x}} u_1, \nabla_{\mathbf{y}} u_2\right].$$

Reformulation:

- $u_1 = -g h; u_2 = -g + h.$
- ► Coupling: $g = (-u_1 u_2)/2$;
- ightharpoonup Zero-sum: $h = (-u_1 + u_2)/2$.

VIP of

$$\mathcal{F} = -\left[\nabla_{\mathbf{x}}u_{1}, \nabla_{\mathbf{y}}u_{2}\right] = \nabla g + \left[\nabla_{\mathbf{x}}h, -\nabla_{\mathbf{y}}h\right]$$
$$\triangleq \nabla g + \mathcal{H}.$$

- ightharpoonup g=0, or
- $\triangleright \mathcal{F} = [\nabla_{\mathsf{x}} h, -\nabla_{\mathsf{y}} h] = \mathcal{H}$
- Minimax optimization

$$\min_{\mathbf{x} \in X} \max_{\mathbf{y} \in Y} h(\mathbf{x}, \mathbf{y}).$$

Reformulation:

- $u_1 = -g h; u_2 = -g + h.$
- ► Coupling: $g = (-u_1 u_2)/2$;
- ightharpoonup Zero-sum: $h = (-u_1 + u_2)/2$.

VIP of

$$\mathcal{F} = -\left[\nabla_{\mathbf{x}}u_1, \nabla_{\mathbf{y}}u_2\right] = \nabla g + \left[\nabla_{\mathbf{x}}h, -\nabla_{\mathbf{y}}h\right]$$
$$\triangleq \nabla g + \mathcal{H}.$$

- \triangleright g=0, or
- $\triangleright \mathcal{F} = [\nabla_{\mathsf{x}} h, -\nabla_{\mathsf{y}} h] = \mathcal{H}$
- Minimax optimization

$$\min_{\mathbf{x} \in X} \max_{\mathbf{y} \in Y} h(\mathbf{x}, \mathbf{y}).$$

Reformulation:

- $u_1 = -g h; u_2 = -g + h.$
- ► Coupling: $g = (-u_1 u_2)/2$;
- ightharpoonup Zero-sum: $h = (-u_1 + u_2)/2$.

VIP of

$$\mathcal{F} = -\left[\nabla_{\mathbf{x}}u_1, \nabla_{\mathbf{y}}u_2\right] = \nabla g + \left[\nabla_{\mathbf{x}}h, -\nabla_{\mathbf{y}}h\right]$$
$$\triangleq \nabla g + \mathcal{H}.$$

- \triangleright g=0, or
- $\triangleright \mathcal{F} = [\nabla_{\mathsf{x}} h, -\nabla_{\mathsf{y}} h] = \mathcal{H}$
- Minimax optimization

$$\min_{\mathbf{x} \in X} \max_{\mathbf{y} \in Y} h(\mathbf{x}, \mathbf{y}).$$

Reformulation:

- $u_1 = -g h; u_2 = -g + h.$
- ► Coupling: $g = (-u_1 u_2)/2$;
- ightharpoonup Zero-sum: $h = (-u_1 + u_2)/2$.

VIP of

$$\mathcal{F} = -\left[\nabla_{\mathbf{x}}u_1, \nabla_{\mathbf{y}}u_2\right] = \nabla g + \left[\nabla_{\mathbf{x}}h, -\nabla_{\mathbf{y}}h\right]$$
$$\triangleq \nabla g + \mathcal{H}.$$

- \triangleright g=0, or
- $\triangleright \mathcal{F} = [\nabla_{\mathsf{x}} h, -\nabla_{\mathsf{y}} h] = \mathcal{H}$
- Minimax optimization

$$\min_{\mathbf{x} \in X} \max_{\mathbf{y} \in Y} h(\mathbf{x}, \mathbf{y}).$$

Reformulation:

- $u_1 = -g h; u_2 = -g + h.$
- ► Coupling: $g = (-u_1 u_2)/2$;
- ightharpoonup Zero-sum: $h = (-u_1 + u_2)/2$.

VIP of

$$\mathcal{F} = -\left[\nabla_{\mathbf{x}}u_1, \nabla_{\mathbf{y}}u_2\right] = \nabla g + \left[\nabla_{\mathbf{x}}h, -\nabla_{\mathbf{y}}h\right]$$
$$\triangleq \nabla g + \mathcal{H}.$$

- \triangleright g=0, or
- $\triangleright \mathcal{F} = [\nabla_{\mathsf{x}} h, -\nabla_{\mathsf{y}} h] = \mathcal{H}$
- Minimax optimization

Reformulation:

- $u_1 = -g h; u_2 = -g + h.$
- Coupling: $g = (-u_1 u_2)/2$;
- ightharpoonup Zero-sum: $h = (-u_1 + u_2)/2$.

VIP of

$$\mathcal{F} = -\left[\nabla_{\mathbf{x}}u_1, \nabla_{\mathbf{y}}u_2\right] = \nabla g + \left[\nabla_{\mathbf{x}}h, -\nabla_{\mathbf{y}}h\right]$$
$$\triangleq \nabla g + \mathcal{H}.$$

- \triangleright g=0, or
- $\triangleright \mathcal{F} = [\nabla_{\mathsf{x}} h, -\nabla_{\mathsf{y}} h] = \mathcal{H}$
- Minimax optimization

Reformulation:

- $u_1 = -g h; u_2 = -g + h.$
- Coupling: $g = (-u_1 u_2)/2$;
- ightharpoonup Zero-sum: $h = (-u_1 + u_2)/2$.

VIP of

$$\mathcal{F} = -\left[\nabla_{\mathbf{x}}u_1, \nabla_{\mathbf{y}}u_2\right] = \nabla g + \left[\nabla_{\mathbf{x}}h, -\nabla_{\mathbf{y}}h\right]$$

$$\triangleq \nabla g + \mathcal{H}.$$

- \triangleright g=0, or
- $ightharpoonup \mathcal{F} = [\nabla_{\mathsf{x}} h, -\nabla_{\mathsf{y}} h] = \mathcal{H}$
- Minimax optimization:

Reformulation:

- $u_1 = -g h; u_2 = -g + h.$
- Coupling: $g = (-u_1 u_2)/2$;
- ightharpoonup Zero-sum: $h = (-u_1 + u_2)/2$.

VIP of

$$\mathcal{F} = -\left[\nabla_{\mathbf{x}}u_1, \nabla_{\mathbf{y}}u_2\right] = \nabla g + \left[\nabla_{\mathbf{x}}h, -\nabla_{\mathbf{y}}h\right]$$

$$\triangleq \nabla g + \mathcal{H}.$$

- ightharpoonup g=0, or
- $\triangleright \mathcal{F} = [\nabla_{\mathbf{x}} h, -\nabla_{\mathbf{y}} h] = \mathcal{H}.$
- ► Minimax optimization:

$$\min_{\mathbf{x} \in X} \max_{\mathbf{y} \in Y} h(\mathbf{x}, \mathbf{y}).$$

Reformulation:

- $u_1 = -g h; u_2 = -g + h.$
- Coupling: $g = (-u_1 u_2)/2$;
- ightharpoonup Zero-sum: $h = (-u_1 + u_2)/2$.

VIP of

$$\mathcal{F} = -\left[\nabla_{\mathbf{x}}u_1, \nabla_{\mathbf{y}}u_2\right] = \nabla g + \left[\nabla_{\mathbf{x}}h, -\nabla_{\mathbf{y}}h\right]$$

$$\triangleq \nabla g + \mathcal{H}.$$

- ightharpoonup g=0, or
- $\blacktriangleright \ \mathcal{F} = [\nabla_{\mathbf{x}} h, -\nabla_{\mathbf{y}} h] = \mathcal{H}.$
- ► Minimax optimization:

$$\min_{\mathbf{x} \in X} \max_{\mathbf{y} \in Y} h(\mathbf{x}, \mathbf{y}).$$

Reformulation:

- $u_1 = -g h; u_2 = -g + h.$
- Coupling: $g = (-u_1 u_2)/2$;
- ightharpoonup Zero-sum: $h = (-u_1 + u_2)/2$.

VIP of

$$\mathcal{F} = -\left[\nabla_{\mathbf{x}}u_1, \nabla_{\mathbf{y}}u_2\right] = \nabla g + \left[\nabla_{\mathbf{x}}h, -\nabla_{\mathbf{y}}h\right]$$

$$\triangleq \nabla g + \mathcal{H}.$$

- ightharpoonup g=0, or
- $\blacktriangleright \ \mathcal{F} = [\nabla_{\mathbf{x}} h, -\nabla_{\mathbf{y}} h] = \mathcal{H}.$
- Minimax optimization:

$$\min_{\mathbf{x} \in X} \max_{\mathbf{y} \in Y} h(\mathbf{x}, \mathbf{y}).$$

Assumption 1 (convex-concave zero-sum part)

The function $h(\cdot, \cdot)$ is μ -strongly convex- ν -strongly concave.

Assumption 2 (jointly convex coupling part)

The function $g(\cdot, \cdot)$ is **jointly convex**.

Proposition 1

Under Assumptions 1 and 2, $\mathcal{F} = \nabla g + \mathcal{H}$ is min $\{\mu, \nu\}$ -strongly monotone.

Proof.

 ∇g is monotone and $\mathcal H$ is min $\{\mu,\nu\}$ -strongly monotone.

- ▶ Monotone (general-sum) games: g is L-smooth
- ► Monotone zero-sum games: g is 0-smooth

Assumption 1 (convex-concave zero-sum part)

The function $h(\cdot, \cdot)$ is μ -strongly convex- ν -strongly concave.

Assumption 2 (jointly convex coupling part)

The function $g(\cdot, \cdot)$ is **jointly convex**.

Proposition 1

Under Assumptions 1 and 2, $\mathcal{F} = \nabla g + \mathcal{H}$ is $\min\{\mu, \nu\}$ -strongly monotone.

Proof.

 ∇g is monotone and $\mathcal H$ is min $\{\mu,\nu\}$ -strongly monotone.

- ▶ Monotone (general-sum) games: g is L-smooth
- Nionotone zero-sum games: g is u-smooth

Assumption 1 (convex-concave zero-sum part)

The function $h(\cdot, \cdot)$ is μ -strongly convex- ν -strongly concave.

Assumption 2 (jointly convex coupling part)

The function $g(\cdot, \cdot)$ is **jointly convex**.

Proposition 1

Under Assumptions 1 and 2, $\mathcal{F} = \nabla g + \mathcal{H}$ is min $\{\mu, \nu\}$ -strongly monotone.

Proof.

 ∇g is monotone and $\mathcal H$ is $\min\{\mu,\nu\}$ -strongly monotone.

Monotone games: Assumptions 1 and 2.

► Monotone (general-sum) games: g is L-smooth

Monotone zero-sum games: g is 0-smooth

Assumption 1 (convex-concave zero-sum part)

The function $h(\cdot, \cdot)$ is μ -strongly convex- ν -strongly concave.

Assumption 2 (jointly convex coupling part)

The function $g(\cdot, \cdot)$ is **jointly convex**.

Proposition 1

Under Assumptions 1 and 2, $\mathcal{F} = \nabla g + \mathcal{H}$ is min $\{\mu, \nu\}$ -strongly monotone.

Proof.

 ∇g is monotone and \mathcal{H} is min $\{\mu, \nu\}$ -strongly monotone.

Monotone games: Assumptions 1 and 2

Monotone (general-sum) games: g is L-smooth
 Monotone zero-sum games: g is 0-smooth

Assumption 1 (convex-concave zero-sum part)

The function $h(\cdot, \cdot)$ is μ -strongly convex- ν -strongly concave.

Assumption 2 (jointly convex coupling part)

The function $g(\cdot, \cdot)$ is **jointly convex**.

Proposition 1

Under Assumptions 1 and 2, $\mathcal{F} = \nabla g + \mathcal{H}$ is min $\{\mu, \nu\}$ -strongly monotone.

Proof.

 ∇g is monotone and \mathcal{H} is min $\{\mu, \nu\}$ -strongly monotone.

Assumption 1 (convex-concave zero-sum part)

The function $h(\cdot, \cdot)$ is μ -strongly convex- ν -strongly concave.

Assumption 2 (jointly convex coupling part)

The function $g(\cdot, \cdot)$ is **jointly convex**.

Proposition 1

Under Assumptions 1 and 2, $\mathcal{F} = \nabla g + \mathcal{H}$ is min $\{\mu, \nu\}$ -strongly monotone.

Proof.

 ∇g is monotone and $\mathcal H$ is $\min\{\mu,\nu\}$ -strongly monotone.

- ▶ Monotone (general-sum) games: *g* is *L*-smooth;
- ► Monotone zero-sum games: *g* is 0-smooth.

Assumption 1 (convex-concave zero-sum part)

The function $h(\cdot, \cdot)$ is μ -strongly convex- ν -strongly concave.

Assumption 2 (jointly convex coupling part)

The function $g(\cdot, \cdot)$ is **jointly convex**.

Proposition 1

Under Assumptions 1 and 2, $\mathcal{F} = \nabla g + \mathcal{H}$ is min $\{\mu, \nu\}$ -strongly monotone.

Proof.

 ∇g is monotone and \mathcal{H} is min $\{\mu, \nu\}$ -strongly monotone.

- ▶ Monotone (general-sum) games: *g* is *L*-smooth;
- ▶ Monotone zero-sum games: *g* is 0-smooth.

- Equal conditioning $(\mu = \nu)$:
 - Bilinear coupling, zero sum¹
 - General coupling, general sum² (multi-player)
- General conditioning $(\mu \neq \nu)$:
 - Bilinear coupling, zero sum³
 - General coupling, zero sum⁴
 - General coupling, general sum: ?

³Antonin Chambolle and Thomas Pock. "A first-order primal-dual algorithm for convex problems with applications to imaging". In: Journal of mathematical imaging and vision 40.1 (2011), pp. 120–145; Yunmei Chen, Guanghui Lan, and Yuyuan Ouyang. "Optimal primal-dual methods for a class of saddle point problems". In: SIAM Journal on Optimization 24.4 (2014), pp. 1779–1814; Kiran K. Thekumparampil, Niao He, and Sewoong Oh. "Lifted Primal-Dual Method for Bilinearly Coupled Smooth Minimax Optimization". In: Proceedings of The 25th International Conference on Artificial

¹Yurii Nesterov. "Smooth minimization of non-smooth functions". In: *Mathematical programming* 103 (2005), pp. 127–152.

²Arkadi Nemirovski. "Prox-method with rate of convergence O (1/t) for variational inequalities with Lipschitz continuous monotone operators and smooth convex-concave saddle point problems". In: *SIAM Journal on Optimization* 15.1 (2004), pp. 229–251.

- ▶ Equal conditioning $(\mu = \nu)$:
 - Bilinear coupling, zero sum¹
 - General coupling, general sum² (multi-player)
- General conditioning $(\mu \neq \nu)$:
 - Bilinear coupling, zero sum³
 - General coupling, zero sum⁴
 - General coupling, general sum: ?

 2 Nemirovski, "Prox-method with rate of convergence O (1/t) for variational inequalities with Lipschitz continuous monotone operators and smooth convex-concave saddle point problems".

³Chambolle and Pock, "A first-order primal-dual algorithm for convex problems with applications to imaging"; Chen, Lan, and Ouyang, "Optimal primal-dual methods for a class of saddle point problems"; Thekumparampil, He, and Oh, "Lifted Primal-Dual Method for Bilinearly Coupled Smooth Minimax Optimization".

⁴Lin, Jin, and Jordan, "Near-optimal algorithms for minimax optimization"; Kovalev and Gasnikov, "The first optimal algorithm for smooth and strongly-convex-strongly-concave minimax optimization"; Lan and Li, "A Novel Catalyst

¹Nesterov, "Smooth minimization of non-smooth functions".

- Equal conditioning $(\mu = \nu)$:
 - Bilinear coupling, zero sum¹
 - General coupling, general sum² (multi-player)
- ▶ General conditioning $(\mu \neq \nu)$:

¹Nesterov, "Smooth minimization of non-smooth functions".

 $^{^2}$ Nemirovski, "Prox-method with rate of convergence O (1/t) for variational inequalities with Lipschitz continuous monotone operators and smooth convex-concave saddle point problems".

- Equal conditioning $(\mu = \nu)$:
 - Bilinear coupling, zero sum¹
 - General coupling, general sum² (multi-player)
- General conditioning $(\mu \neq \nu)$:
 - Bilinear coupling, zero sum³
 - General coupling, zero sum⁴
 - General coupling, general sum: ?

¹Nesterov, "Smooth minimization of non-smooth functions".

 $^{^2}$ Nemirovski, "Prox-method with rate of convergence O (1/t) for variational inequalities with Lipschitz continuous monotone operators and smooth convex-concave saddle point problems".

³Chambolle and Pock, "A first-order primal-dual algorithm for convex problems with applications to imaging"; Chen, Lan, and Ouyang, "Optimal primal-dual methods for a class of saddle point problems"; Thekumparampil, He, and Oh, "Lifted Primal-Dual Method for Bilinearly Coupled Smooth Minimax Optimization".

⁴Lin, Jin, and Jordan, "Near-optimal algorithms for minimax optimization"; Kovalev and Gasnikov, "The first optimal algorithm for smooth and strongly-convex-strongly-concave minimax optimization"; Lan and Li, "A Novel Catalyst Scheme for Stochastic Minimax Optimization".

- Equal conditioning $(\mu = \nu)$:
 - Bilinear coupling, zero sum¹
 - General coupling, general sum² (multi-player)
- General conditioning $(\mu \neq \nu)$:
 - Bilinear coupling, zero sum³
 - General coupling, zero sum⁴
 - General coupling, general sum: ?

⁴Lin, Jin, and Jordan, "Near-optimal algorithms for minimax optimization"; Kovalev and Gasnikov, "The first optimal algorithm for smooth and strongly-convex-strongly-concave minimax optimization"; Lan and Li, "A Novel Catalyst Scheme for Stochastic Minimax Optimization".

¹Nesterov, "Smooth minimization of non-smooth functions".

 $^{^2}$ Nemirovski, "Prox-method with rate of convergence O (1/t) for variational inequalities with Lipschitz continuous monotone operators and smooth convex-concave saddle point problems".

³Chambolle and Pock, "A first-order primal-dual algorithm for convex problems with applications to imaging"; Chen, Lan, and Ouyang, "Optimal primal-dual methods for a class of saddle point problems"; Thekumparampil, He, and Oh, "Lifted Primal-Dual Method for Bilinearly Coupled Smooth Minimax Optimization".

- Equal conditioning $(\mu = \nu)$:
 - Bilinear coupling, zero sum¹
 - General coupling, general sum² (multi-player)
- General conditioning $(\mu \neq \nu)$:
 - Bilinear coupling, zero sum³
 - General coupling, zero sum⁴
 - General coupling, general sum: ?

⁴Lin, Jin, and Jordan, "Near-optimal algorithms for minimax optimization"; Kovalev and Gasnikov, "The first optimal algorithm for smooth and strongly-convex-strongly-concave minimax optimization"; Lan and Li, "A Novel Catalyst Scheme for Stochastic Minimax Optimization".

¹Nesterov, "Smooth minimization of non-smooth functions".

 $^{^2}$ Nemirovski, "Prox-method with rate of convergence O (1/t) for variational inequalities with Lipschitz continuous monotone operators and smooth convex-concave saddle point problems".

³Chambolle and Pock, "A first-order primal-dual algorithm for convex problems with applications to imaging"; Chen, Lan, and Ouyang, "Optimal primal-dual methods for a class of saddle point problems"; Thekumparampil, He, and Oh, "Lifted Primal-Dual Method for Bilinearly Coupled Smooth Minimax Optimization".

- Equal conditioning $(\mu = \nu)$:
 - Bilinear coupling, zero sum¹
 - General coupling, general sum² (multi-player)
- General conditioning $(\mu \neq \nu)$:
 - Bilinear coupling, zero sum³
 - General coupling, zero sum⁴
 - General coupling, general sum: ?

⁴Lin, Jin, and Jordan, "Near-optimal algorithms for minimax optimization"; Kovalev and Gasnikov, "The first optimal algorithm for smooth and strongly-convex-strongly-concave minimax optimization"; Lan and Li, "A Novel Catalyst Scheme for Stochastic Minimax Optimization".

¹Nesterov, "Smooth minimization of non-smooth functions".

 $^{^2}$ Nemirovski, "Prox-method with rate of convergence O (1/t) for variational inequalities with Lipschitz continuous monotone operators and smooth convex-concave saddle point problems".

³Chambolle and Pock, "A first-order primal-dual algorithm for convex problems with applications to imaging"; Chen, Lan, and Ouyang, "Optimal primal-dual methods for a class of saddle point problems"; Thekumparampil, He, and Oh, "Lifted Primal-Dual Method for Bilinearly Coupled Smooth Minimax Optimization".

Gradient complexity for ε -Nash equilibrium

Proposition 2 (Monotone (general-sum) games⁵)

For monotone games, the gradient complexity is $\widetilde{\mathcal{O}}\left(\frac{L}{\min\{\mu,\nu\}}\cdot\log\left(\frac{1}{\varepsilon}\right)\right)$.

Proposition 3 (Monotone zero-sum games (minimax optimization) $^{\circ}$)

For monotone zero-sum games, the gradient complexity is

$$\widetilde{\mathcal{O}}\left(\frac{L}{\sqrt{\mu\nu}} \cdot \log\left(\frac{1}{\varepsilon}\right)\right).$$

⁵Paul Tseng. "On linear convergence of iterative methods for the variational inequality problem". In: *Journal of Computational and Applied Mathematics* 60.1-2 (1995), pp. 237–252.

⁶Kovalev and Gasnikov, "The first optimal algorithm for smooth and strongly-convex-strongly-concave minimax optimization"; Lan and Li, "A Novel Catalyst Scheme for Stochastic Minimax Optimization".

Gradient complexity for ε -Nash equilibrium

Proposition 2 (Monotone (general-sum) games⁵)

For monotone games, the gradient complexity is $\widetilde{\mathcal{O}}\left(\frac{L}{\min\{\mu,\nu\}}\cdot\log\left(\frac{1}{\varepsilon}\right)\right)$.

Proposition 3 (Monotone zero-sum games (minimax optimization)⁶)

For monotone zero-sum games, the gradient complexity is

$$\widetilde{\mathcal{O}}\left(\frac{L}{\sqrt{\mu\nu}}\cdot\log\left(\frac{1}{\varepsilon}\right)\right).$$

⁵Tseng, "On linear convergence of iterative methods for the variational inequality problem".

⁶Kovalev and Gasnikov, "The first optimal algorithm for smooth and strongly-convex-strongly-concave minimax optimization"; Lan and Li, "A Novel Catalyst Scheme for Stochastic Minimax Optimization".

Outline for section 2

- Introduction
- 2 New Class
- Algorithm and Analysis
 - Iterative Coupling Linearization
 - Convergence Analysis
- Application Examples
- 5 Numerical Experiments

Assumption 3 (near-zero-sum)

There exists $\delta \in [0, L]$ such that the function $g(\cdot, \cdot)$ is δ -smooth.

Definition 1 (MONOTONE NEAR-ZERO-SUM GAMES)

A two-person general-sum game is a **monotone** δ -near-zero-sum game if it satisfies Assumptions 1 to 3.

We study the NEP of monotone near-zero-sum games, or the VIP of

$$\mathcal{F}(\mathbf{x}, \mathbf{y}) = \nabla g(\mathbf{x}, \mathbf{y}) + \underbrace{\mathcal{H}(\mathbf{x}, \mathbf{y})}_{[\nabla_{\mathbf{x}} h(\mathbf{x}, \mathbf{y}), -\nabla_{\mathbf{y}} h(\mathbf{x}, \mathbf{y})]}, \quad \mathbf{x} \in X, \ \mathbf{y} \in Y, \quad (1)$$

- ① ∇g is δ -Lipschitz continuous; \mathcal{H} is L-Lipschitz continuous ($\delta \leq L$);
- 2 $g(\mathbf{x}, \mathbf{y})$ is jointly convex; h is μ -strongly convex- ν -strongly concave.

Assumption 3 (near-zero-sum)

There exists $\delta \in [0, L]$ such that the function $g(\cdot, \cdot)$ is δ -smooth.

Definition 1 (MONOTONE NEAR-ZERO-SUM GAMES)

A two-person general-sum game is a **monotone** δ -**near-zero-sum game** if it satisfies Assumptions 1 to 3.

We study the NEP of monotone near-zero-sum games, or the VIP of

$$\mathcal{F}(\mathbf{x}, \mathbf{y}) = \nabla g(\mathbf{x}, \mathbf{y}) + \underbrace{\mathcal{H}(\mathbf{x}, \mathbf{y})}_{[\nabla_{\mathbf{x}} h(\mathbf{x}, \mathbf{y}), -\nabla_{\mathbf{y}} h(\mathbf{x}, \mathbf{y})]}, \quad \mathbf{x} \in X, \ \mathbf{y} \in Y, \quad (1)$$

- ① ∇g is δ -Lipschitz continuous; $\mathcal H$ is L-Lipschitz continuous ($\delta \leq L$);
- $g(\mathbf{x}, \mathbf{y})$ is jointly convex; h is μ -strongly convex- ν -strongly concave.

Assumption 3 (near-zero-sum)

There exists $\delta \in [0, L]$ such that the function $g(\cdot, \cdot)$ is δ -smooth.

Definition 1 (MONOTONE NEAR-ZERO-SUM GAMES)

A two-person general-sum game is a **monotone** δ -near-zero-sum game if it satisfies Assumptions 1 to 3.

We study the NEP of monotone near-zero-sum games, or the ${\sf VIP}$ of

$$\mathcal{F}(\mathbf{x}, \mathbf{y}) = \nabla g(\mathbf{x}, \mathbf{y}) + \underbrace{\mathcal{H}(\mathbf{x}, \mathbf{y})}_{[\nabla_{\mathbf{x}} h(\mathbf{x}, \mathbf{y}), -\nabla_{\mathbf{y}} h(\mathbf{x}, \mathbf{y})]}, \quad \mathbf{x} \in X, \ \mathbf{y} \in Y, \quad (1)$$

- ① ∇g is δ -Lipschitz continuous; \mathcal{H} is L-Lipschitz continuous ($\delta \leq L$);
- $g(\mathbf{x}, \mathbf{y})$ is jointly convex; h is μ -strongly convex- ν -strongly concave.

Assumption 3 (near-zero-sum)

There exists $\delta \in [0, L]$ such that the function $g(\cdot, \cdot)$ is δ -smooth.

Definition 1 (MONOTONE NEAR-ZERO-SUM GAMES)

A two-person general-sum game is a **monotone** δ -**near-zero-sum game** if it satisfies Assumptions 1 to 3.

We study the NEP of monotone near-zero-sum games, or the VIP of

$$\mathcal{F}(\mathbf{x}, \mathbf{y}) = \nabla g(\mathbf{x}, \mathbf{y}) + \underbrace{\mathcal{H}(\mathbf{x}, \mathbf{y})}_{[\nabla_{\mathbf{x}} h(\mathbf{x}, \mathbf{y}), -\nabla_{\mathbf{y}} h(\mathbf{x}, \mathbf{y})]}, \quad \mathbf{x} \in X, \ \mathbf{y} \in Y, \quad (1)$$

- **1** ∇g is δ -Lipschitz continuous; \mathcal{H} is L-Lipschitz continuous ($\delta \leq L$);
- $g(\mathbf{x}, \mathbf{y})$ is jointly convex; h is μ -strongly convex- ν -strongly concave.

Assumption 3 (near-zero-sum)

There exists $\delta \in [0, L]$ such that the function $g(\cdot, \cdot)$ is δ -smooth.

Definition 1 (MONOTONE NEAR-ZERO-SUM GAMES)

A two-person general-sum game is a **monotone** δ -**near-zero-sum game** if it satisfies Assumptions 1 to 3.

We study the NEP of monotone near-zero-sum games, or the VIP of

$$\mathcal{F}(\mathbf{x}, \mathbf{y}) = \nabla g(\mathbf{x}, \mathbf{y}) + \underbrace{\mathcal{H}(\mathbf{x}, \mathbf{y})}_{[\nabla_{\mathbf{x}} h(\mathbf{x}, \mathbf{y}), -\nabla_{\mathbf{y}} h(\mathbf{x}, \mathbf{y})]}, \quad \mathbf{x} \in X, \ \mathbf{y} \in Y, \quad (1)$$

- **1** ∇g is δ -Lipschitz continuous; \mathcal{H} is L-Lipschitz continuous ($\delta \leq L$);
- **2** $g(\mathbf{x}, \mathbf{y})$ is jointly convex; h is μ -strongly convex- ν -strongly concave.

Outline for section 3

- Introduction
- 2 New Class
- 3 Algorithm and Analysis
 - Iterative Coupling Linearization
 - Convergence Analysis
- Application Examples
- 5 Numerical Experiments

Monotone zero-sum games ($u_1 + u_2 = 0$):

- ► $h_x(\mathbf{x}) \triangleq -u_1(\mathbf{x}, \mathbf{y}(\mathbf{x}))$ is μ -strongly-convex,
- where $\mathbf{y}(\mathbf{x}) \triangleq \arg\max_{\mathbf{y} \in Y} u_2(\mathbf{x}, \mathbf{y}).$

$$\mathbf{x}_{t+1} pprox rg \min_{\mathbf{x} \in X} \ \left[h_{\mathbf{x}}(\mathbf{x}) + rac{
u}{2} \, \|\mathbf{x} - \mathbf{x}_t\|^2
ight] \, .$$

- ▶ Total gradient complexity: $\widetilde{\mathcal{O}}\left(rac{L}{\sqrt{\mu
 u}} \cdot \log^2\left(rac{1}{arepsilon}
 ight)
 ight)$
- ▶ Outer loop: $\widetilde{\mathcal{O}}\left(\sqrt{\nu/\mu} \cdot \log\left(\frac{1}{\varepsilon}\right)\right)$ iterations;⁷
- ▶ Inner loop: $\widetilde{\mathcal{O}}\left(\frac{1}{\nu} \cdot \log\left(\frac{1}{\varepsilon}\right)\right)$ gradient queries.⁸

^{&#}x27;Nesterov, "Smooth minimization of non-smooth functions'

⁸Tseng, "On linear convergence of iterative methods for the variational inequality problem".

Monotone zero-sum games ($u_1 + u_2 = 0$):

- ► $h_x(\mathbf{x}) \triangleq -u_1(\mathbf{x}, \mathbf{y}(\mathbf{x}))$ is μ -strongly-convex,
- where $\mathbf{y}(\mathbf{x}) \triangleq \arg \max_{\mathbf{y} \in Y} u_2(\mathbf{x}, \mathbf{y})$.

$$\mathbf{x}_{t+1} pprox \operatorname*{arg\,min}_{\mathbf{x} \in X} \ \left[h_{\mathbf{x}}(\mathbf{x}) + rac{
u}{2} \left\| \mathbf{x} - \mathbf{x}_{t}
ight\|^{2}
ight] \, .$$

- ▶ Total gradient complexity: $\widetilde{\mathcal{O}}\left(\frac{L}{\sqrt{\mu\nu}} \cdot \log^2\left(\frac{1}{\varepsilon}\right)\right)$
- ightharpoonup Outer loop: $\widetilde{\mathcal{O}}\left(\sqrt{\nu/\mu}\cdot\log\left(\frac{1}{\varepsilon}\right)\right)$ iterations;
- ▶ Inner loop: $\widetilde{\mathcal{O}}\left(\frac{L}{\nu}\cdot\log\left(\frac{1}{\varepsilon}\right)\right)$ gradient queries.⁸

⁷Nesterov, "Smooth minimization of non-smooth functions"

⁸Tseng, "On linear convergence of iterative methods for the variational inequality problem".

Monotone zero-sum games ($u_1 + u_2 = 0$):

- ► $h_x(\mathbf{x}) \triangleq -u_1(\mathbf{x}, \mathbf{y}(\mathbf{x}))$ is μ -strongly-convex,
- where $\mathbf{y}(\mathbf{x}) \triangleq \arg \max_{\mathbf{y} \in Y} u_2(\mathbf{x}, \mathbf{y})$.

$$\mathbf{x}_{t+1} pprox \operatorname*{arg\,min}_{\mathbf{x} \in X} \ \left[h_{\mathbf{x}}(\mathbf{x}) + rac{
u}{2} \left\| \mathbf{x} - \mathbf{x}_{t}
ight\|^{2}
ight] \, .$$

- ▶ Total gradient complexity: $\widetilde{\mathcal{O}}\left(\frac{L}{\sqrt{\mu\nu}} \cdot \log^2\left(\frac{1}{\varepsilon}\right)\right)$
- ightharpoonup Outer loop: $\widetilde{\mathcal{O}}\left(\sqrt{\nu/\mu}\cdot\log\left(\frac{1}{\varepsilon}\right)\right)$ iterations;
- ▶ Inner loop: $\widetilde{\mathcal{O}}\left(\frac{L}{\nu}\cdot\log\left(\frac{1}{\varepsilon}\right)\right)$ gradient queries.⁸

⁷Nesterov, "Smooth minimization of non-smooth functions"

⁸Tseng, "On linear convergence of iterative methods for the variational inequality problem".

Monotone zero-sum games ($u_1 + u_2 = 0$):

- ► $h_x(\mathbf{x}) \triangleq -u_1(\mathbf{x}, \mathbf{y}(\mathbf{x}))$ is μ -strongly-convex,
- where $\mathbf{y}(\mathbf{x}) \triangleq \arg \max_{\mathbf{y} \in Y} u_2(\mathbf{x}, \mathbf{y}).$

$$\mathbf{x}_{t+1} pprox \operatorname*{arg\,min}_{\mathbf{x} \in X} \left[h_{\mathbf{x}}(\mathbf{x}) + \frac{\nu}{2} \|\mathbf{x} - \mathbf{x}_{t}\|^{2} \right].$$

- ▶ Total gradient complexity: $\widetilde{\mathcal{O}}\left(\frac{L}{\sqrt{\mu\nu}} \cdot \log^2\left(\frac{1}{\epsilon}\right)\right)$
- ightharpoonup Outer loop: $\widetilde{\mathcal{O}}\left(\sqrt{\nu/\mu} \cdot \log\left(\frac{1}{\varepsilon}\right)\right)$ iterations;
- \blacktriangleright Inner loop: $\widetilde{\mathcal{O}}\left(\frac{1}{\nu}\cdot\log\left(\frac{1}{\varepsilon}\right)\right)$ gradient queries.⁸

^{&#}x27;Nesteroy, "Smooth minimization of non-smooth functions".

⁸Tseng, "On linear convergence of iterative methods for the variational inequality problem".

Monotone zero-sum games ($u_1 + u_2 = 0$):

- ► $h_x(\mathbf{x}) \triangleq -u_1(\mathbf{x}, \mathbf{y}(\mathbf{x}))$ is μ -strongly-convex,
- where $\mathbf{y}(\mathbf{x}) \triangleq \underset{\mathbf{y} \in Y}{\text{arg max }} u_2(\mathbf{x}, \mathbf{y}).$

$$\mathbf{x}_{t+1} pprox \operatorname*{arg\,min}_{\mathbf{x} \in X} \left[h_{\scriptscriptstyle X}(\mathbf{x}) + rac{
u}{2} \left\| \mathbf{x} - \mathbf{x}_{t}
ight\|^{2}
ight] \, .$$

- ▶ Total gradient complexity: $\tilde{\mathcal{O}}\left(\frac{L}{\sqrt{\mu\nu}} \cdot \log^2\left(\frac{L}{\sqrt{\mu\nu}}\right)\right)$
- Outer loop: $\tilde{\mathcal{O}}\left(\sqrt{\nu/\mu} \cdot \log\left(\frac{1}{\varepsilon}\right)\right)$ iterations;
- ightharpoons Inner loop: $\mathcal{O}\left(rac{1}{2}/
 u\cdot\log\left(rac{1}{arepsilon}
 ight)
 ight)$ gradient queries. 8

^{*}Tseng, "On linear convergence of iterative methods for the variational inequality problem".

Monotone zero-sum games ($u_1 + u_2 = 0$):

- ► $h_x(\mathbf{x}) \triangleq -u_1(\mathbf{x}, \mathbf{y}(\mathbf{x}))$ is μ -strongly-convex,
- where $\mathbf{y}(\mathbf{x}) \triangleq \arg \max_{\mathbf{y} \in Y} u_2(\mathbf{x}, \mathbf{y}).$

$$\mathbf{x}_{t+1} pprox \operatorname*{arg\,min}_{\mathbf{x} \in X} \left[h_{x}(\mathbf{x}) + \frac{\nu}{2} \left\| \mathbf{x} - \mathbf{x}_{t} \right\|^{2} \right].$$

- ▶ Total gradient complexity: $\widetilde{\mathcal{O}}\left(\frac{L}{\sqrt{\mu\nu}}\cdot\log^2\left(\frac{1}{\varepsilon}\right)\right)$.
- ▶ Outer loop: $\widetilde{\mathcal{O}}\left(\sqrt{\nu/\mu} \cdot \log\left(\frac{1}{\varepsilon}\right)\right)$ iterations;⁷
- ▶ Inner loop: $\widetilde{\mathcal{O}}\left(\frac{1}{\nu} \cdot \log\left(\frac{1}{\varepsilon}\right)\right)$ gradient queries.⁸

⁷Nesterov, "Smooth minimization of non-smooth functions"

⁸Tseng, "On linear convergence of iterative methods for the variational inequality problem".

Monotone zero-sum games ($u_1 + u_2 = 0$):

- ► $h_x(\mathbf{x}) \triangleq -u_1(\mathbf{x}, \mathbf{y}(\mathbf{x}))$ is μ -strongly-convex,
- where $\mathbf{y}(\mathbf{x}) \triangleq \arg \max_{\mathbf{y} \in Y} u_2(\mathbf{x}, \mathbf{y}).$

$$\mathbf{x}_{t+1} pprox \operatorname*{arg\,min}_{\mathbf{x} \in X} \left[h_{x}(\mathbf{x}) + \frac{\nu}{2} \left\| \mathbf{x} - \mathbf{x}_{t} \right\|^{2} \right].$$

- ▶ Total gradient complexity: $\widetilde{\mathcal{O}}\left(\frac{L}{\sqrt{\mu\nu}}\cdot\log^2\left(\frac{1}{\varepsilon}\right)\right)$.
- ▶ Outer loop: $\widetilde{\mathcal{O}}\left(\sqrt{\nu/\mu} \cdot \log\left(\frac{1}{\varepsilon}\right)\right)$ iterations;⁷
- ▶ Inner loop: $\widetilde{\mathcal{O}}\left(\frac{1}{\nu} \cdot \log\left(\frac{1}{\varepsilon}\right)\right)$ gradient queries.⁸

⁷Nesterov, "Smooth minimization of non-smooth functions".

 $^{^8 \}text{Tseng}$, "On linear convergence of iterative methods for the variational inequality problem".

Monotone zero-sum games ($u_1 + u_2 = 0$):

- ► $h_x(\mathbf{x}) \triangleq -u_1(\mathbf{x}, \mathbf{y}(\mathbf{x}))$ is μ -strongly-convex,
- where $\mathbf{y}(\mathbf{x}) \triangleq \arg \max_{\mathbf{y} \in Y} u_2(\mathbf{x}, \mathbf{y}).$

$$\mathbf{x}_{t+1} pprox \operatorname*{arg\,min}_{\mathbf{x} \in X} \left[h_{x}(\mathbf{x}) + rac{
u}{2} \left\| \mathbf{x} - \mathbf{x}_{t} \right\|^{2} \right].$$

- ▶ Total gradient complexity: $\widetilde{\mathcal{O}}\left(\frac{L}{\sqrt{\mu\nu}}\cdot\log^2\left(\frac{1}{\varepsilon}\right)\right)$.
- ▶ Outer loop: $\widetilde{\mathcal{O}}\left(\sqrt{\nu/\mu} \cdot \log\left(\frac{1}{\varepsilon}\right)\right)$ iterations;⁷
- ▶ Inner loop: $\widetilde{\mathcal{O}}\left(\frac{1}{\nu} \cdot \log\left(\frac{1}{\varepsilon}\right)\right)$ gradient queries.⁸

⁷Nesterov, "Smooth minimization of non-smooth functions".

 $^{^8 \}text{Tseng}$, "On linear convergence of iterative methods for the variational inequality problem".

- ► $X = [0,1] \times [1,2] \subseteq \mathbb{R}^2$ and $Y = [-1,0] \subseteq \mathbb{R}$;
- $u_1 = -\frac{1}{2}(x_1 1)^2 \frac{1}{2}(x_2 1)^2 + \frac{1}{2}x_1y$ and $u_2 = \frac{1}{2}x_2y (y + 1)^2$.
- ▶ Converges to the **Stackelberg solution**: $(\mathbf{x} = \left(\frac{40}{63}, \frac{68}{63}\right), \ y = -\frac{46}{63}),$
- NOT Nash equilibrium: $(\mathbf{x} = \left(\frac{5}{8}, 1\right), y = -\frac{3}{4}).$

- ► $X = [0,1] \times [1,2] \subseteq \mathbb{R}^2$ and $Y = [-1,0] \subseteq \mathbb{R}$;
- $u_1 = -\frac{1}{2}(x_1-1)^2 \frac{1}{2}(x_2-1)^2 + \frac{1}{2}x_1y \text{ and } u_2 = \frac{1}{2}x_2y (y+1)^2.$
- ▶ Converges to the **Stackelberg solution**: $(\mathbf{x} = \left(\frac{40}{63}, \frac{68}{63}\right), \ y = -\frac{46}{63}),$
- NOT Nash equilibrium: $(\mathbf{x} = \left(\frac{5}{8}, 1\right), y = -\frac{3}{4}).$

- ► $X = [0,1] \times [1,2] \subseteq \mathbb{R}^2$ and $Y = [-1,0] \subseteq \mathbb{R}$;
- $u_1 = -\frac{1}{2}(x_1 1)^2 \frac{1}{2}(x_2 1)^2 + \frac{1}{2}x_1y$ and $u_2 = \frac{1}{2}x_2y (y + 1)^2$.
- ▶ Converges to the **Stackelberg solution**: $(\mathbf{x} = \begin{pmatrix} \frac{40}{63}, \frac{68}{63} \end{pmatrix}, \ y = -\frac{46}{63}),$
- NOT Nash equilibrium: $(\mathbf{x} = \left(\frac{5}{8}, 1\right), y = -\frac{3}{4}).$

- ► $X = [0,1] \times [1,2] \subseteq \mathbb{R}^2$ and $Y = [-1,0] \subseteq \mathbb{R}$;
- $u_1 = -\frac{1}{2}(x_1 1)^2 \frac{1}{2}(x_2 1)^2 + \frac{1}{2}x_1y$ and $u_2 = \frac{1}{2}x_2y (y + 1)^2$.
- ▶ Converges to the **Stackelberg solution**: $(\mathbf{x} = \begin{pmatrix} \frac{40}{63}, \frac{68}{63} \end{pmatrix}, y = -\frac{46}{63}),$
- NOT Nash equilibrium: $(\mathbf{x} = \left(\frac{5}{8}, 1\right), y = -\frac{3}{4}).$

Our idea

Potential Function: For all $z = (x, y) \in X \times Y$,

$$\underline{\Delta}(\mathbf{z}) \stackrel{\mathsf{def}}{=} \max_{\widetilde{\mathbf{z}} = (\widetilde{\mathbf{x}}, \widetilde{\mathbf{y}}) \in X \times Y} \underline{g(\mathbf{z}) - g(\widetilde{\mathbf{z}})}_{\mathsf{jointly convex coupling}} + \underbrace{h(\mathbf{x}, \widetilde{\mathbf{y}}) - h(\widetilde{\mathbf{x}}, \mathbf{y})}_{\mathsf{convex-concave zero-sum}}.$$

Proposition 4

For all
$$\mathbf{z} = (\mathbf{x}, \mathbf{y}) \in X \times Y$$
, we have $\Delta(\mathbf{z}) \geq 0$ and

$$2\Delta(\mathbf{z}) \geq \max_{\widetilde{\mathbf{z}} = (\widetilde{\mathbf{x}}, \widetilde{\mathbf{y}}) \in X \times Y} \ u_1(\widetilde{\mathbf{x}}, \mathbf{y}) - u_1(\mathbf{x}, \mathbf{y}) + u_2(\mathbf{x}, \widetilde{\mathbf{y}}) - u_2(\mathbf{x}, \mathbf{y}) \,.$$

Proposition 5

Let $\mathbf{z}^* \in X \times Y$. Then, \mathbf{z}^* is the Nash equilibrium if and only if $\Delta(\mathbf{z}^*) = 0$.

Our idea

Potential Function: For all $z = (x, y) \in X \times Y$,

$$\underline{\Delta}(\mathbf{z}) \stackrel{\text{def}}{=} \max_{\widetilde{\mathbf{z}} = (\widetilde{\mathbf{x}}, \widetilde{\mathbf{y}}) \in X \times Y} \underline{\underline{g}(\mathbf{z}) - \underline{g}(\widetilde{\mathbf{z}})}_{\text{jointly convex coupling}} + \underbrace{\underline{h}(\mathbf{x}, \widetilde{\mathbf{y}}) - h(\widetilde{\mathbf{x}}, \mathbf{y})}_{\text{convex-concave zero-sum}}.$$

Proposition 4

For all
$$\mathbf{z} = (\mathbf{x}, \mathbf{y}) \in X \times Y$$
, we have $\Delta(\mathbf{z}) \geq 0$ and

$$2\Delta(\mathbf{z}) \geq \max_{\widetilde{\mathbf{z}} = (\widetilde{\mathbf{x}}, \widetilde{\mathbf{y}}) \in X \times Y} u_1(\widetilde{\mathbf{x}}, \mathbf{y}) - u_1(\mathbf{x}, \mathbf{y}) + u_2(\mathbf{x}, \widetilde{\mathbf{y}}) - u_2(\mathbf{x}, \mathbf{y}).$$

Proposition 5

Let $z^* \in X \times Y$. Then, z^* is the Nash equilibrium if and only if $\Delta(z^*) = 0$.

Our idea

Potential Function: For all $z = (x, y) \in X \times Y$,

$$\underline{\Delta}(\mathbf{z}) \stackrel{\text{def}}{=} \max_{\widetilde{\mathbf{z}} = (\widetilde{\mathbf{x}}, \widetilde{\mathbf{y}}) \in X \times Y} \underline{g(\mathbf{z}) - g(\widetilde{\mathbf{z}})} + \underbrace{h(\mathbf{x}, \widetilde{\mathbf{y}}) - h(\widetilde{\mathbf{x}}, \mathbf{y})}_{\text{jointly convex coupling}} .$$

Proposition 4

For all
$$\mathbf{z} = (\mathbf{x}, \mathbf{y}) \in X \times Y$$
, we have $\Delta(\mathbf{z}) \geq 0$ and

$$2\Delta(\mathbf{z}) \geq \max_{\widetilde{\mathbf{z}} = (\widetilde{\mathbf{x}}, \widetilde{\mathbf{y}}) \in X \times Y} u_1(\widetilde{\mathbf{x}}, \mathbf{y}) - u_1(\mathbf{x}, \mathbf{y}) + u_2(\mathbf{x}, \widetilde{\mathbf{y}}) - u_2(\mathbf{x}, \mathbf{y}).$$

Proposition 5

Let $\mathbf{z}^* \in X \times Y$. Then, \mathbf{z}^* is the Nash equilibrium if and only if $\Delta(\mathbf{z}^*) = 0$.

Our algorithm

Algorithm 1 Iterative Coupling Linearization (ICL)

Require: $\mathbf{x}_0 \in X$, $\mathbf{y}_0 \in Y$.

1: **for**
$$t = 0, 1, \dots, T - 1$$
 do

2: Let

$$\varphi_t(\mathbf{x}, \mathbf{y}) \stackrel{\text{def}}{=} \langle \nabla_{\mathbf{x}} g(\mathbf{x}_t, \mathbf{y}_t), \mathbf{x} \rangle + \frac{1}{2\eta_t} \|\mathbf{x}_t - \mathbf{x}\|^2 + h(\mathbf{x}, \mathbf{y})$$
$$- \langle \nabla_{\mathbf{y}} g(\mathbf{x}_t, \mathbf{y}_t), \mathbf{y} \rangle - \frac{1}{2\eta_t} \|\mathbf{y}_t - \mathbf{y}\|^2$$

3: Find an inexact saddle point $z_{t+1} \in X \times Y$ of φ_t s.t.

$$\langle \nabla_{\mathbf{x}} \varphi_t(\mathbf{z}_{t+1}), \mathbf{x}_{t+1} - \mathbf{x} \rangle - \langle \nabla_{\mathbf{y}} \varphi_t(\mathbf{z}_{t+1}), \mathbf{y}_{t+1} - \mathbf{y} \rangle \leq \varepsilon_t,$$

for all $\mathbf{x} \in X$ and $\mathbf{y} \in Y$.

4. end for

Our algorithm

Algorithm 2 Iterative Coupling Linearization (ICL)

Require: $\mathbf{x}_0 \in X$, $\mathbf{y}_0 \in Y$.

1: **for**
$$t = 0, 1, \dots, T - 1$$
 do

2: Let

$$\varphi_t(\mathbf{x}, \mathbf{y}) \stackrel{\text{def}}{=} \langle \nabla_{\mathbf{x}} g(\mathbf{x}_t, \mathbf{y}_t), \mathbf{x} \rangle + \frac{1}{2\eta_t} \|\mathbf{x}_t - \mathbf{x}\|^2 + h(\mathbf{x}, \mathbf{y})$$
$$- \langle \nabla_{\mathbf{y}} g(\mathbf{x}_t, \mathbf{y}_t), \mathbf{y} \rangle - \frac{1}{2\eta_t} \|\mathbf{y}_t - \mathbf{y}\|^2$$

3: Find an **inexact saddle point** $z_{t+1} \in X \times Y$ of φ_t s.t.

$$\langle \nabla_{\mathbf{x}} \varphi_t(\mathbf{z}_{t+1}), \mathbf{x}_{t+1} - \mathbf{x} \rangle - \langle \nabla_{\mathbf{y}} \varphi_t(\mathbf{z}_{t+1}), \mathbf{y}_{t+1} - \mathbf{y} \rangle \leq \varepsilon_t,$$

for all $\mathbf{x} \in X$ and $\mathbf{y} \in Y$.

4: end for

Convergence analysis - descent lemma

Lemma 1 (Descent lemma)

In monotone δ -near-zero-sum games, for $\eta_t \leq \frac{1}{\delta}$, we have

$$\left(\frac{1}{2\eta_t} + \frac{\min\{\boldsymbol{\mu}, \boldsymbol{\nu}\}}{2}\right) \left\|\mathbf{z}_{t+1} - \mathbf{z}^*\right\|^2 \leq \frac{1}{2\eta_t} \left\|\mathbf{z}_t - \mathbf{z}^*\right\|^2 + \varepsilon_t \,.$$

Proof Sketch

$$\begin{split} 0 &= -\Delta(\mathbf{z}^*) \leq g(\mathbf{z}_{t+1}) - g(\mathbf{z}^*) + h(\mathbf{x}_{t+1}, \mathbf{y}^*) - h(\mathbf{x}^*, \mathbf{y}_{t+1}) \\ &\leq \left\langle \nabla g(\mathbf{z}_t) + \mathcal{H}(\mathbf{z}_{t+1}) + \frac{1}{\eta_t} (\mathbf{z}_{t+1} - \mathbf{z}_t), \mathbf{z}_{t+1} - \mathbf{z}^* \right\rangle - \frac{1}{\eta_t} \left\langle \mathbf{z}_{t+1} - \mathbf{z}_t, \mathbf{z}_{t+1} - \mathbf{z}^* \right\rangle \\ &- \frac{\mu}{2} \left\| \mathbf{x}_{t+1} - \mathbf{x}^* \right\|^2 - \frac{\nu}{2} \left\| \mathbf{y}_{t+1} - \mathbf{y}^* \right\|^2 + \frac{\delta}{2} \left\| \mathbf{z}_{t+1} - \mathbf{z}_t \right\|^2 \\ &\leq \varepsilon_t + \frac{1}{2\eta_t} \left\| \mathbf{x}_t - \mathbf{x}^* \right\|^2 - \left(\frac{1}{2\eta_t} + \frac{\mu}{2} \right) \left\| \mathbf{x}_{t+1} - \mathbf{x}^* \right\|^2 \\ &+ \frac{1}{2\eta_t} \left\| \mathbf{y}_t - \mathbf{y}^* \right\|^2 - \left(\frac{1}{2\eta_t} + \frac{\nu}{2} \right) \left\| \mathbf{y}_{t+1} - \mathbf{y}^* \right\|^2 - \left(\frac{1}{2\eta_t} - \frac{\delta}{2} \right) \left\| \mathbf{z}_{t+1} - \mathbf{z}_t \right\|^2 \,. \end{split}$$

Convergence analysis - descent lemma

Lemma 1 (Descent lemma)

In monotone δ -near-zero-sum games, for $\eta_t \leq \frac{1}{\delta}$, we have

$$\left(\frac{1}{2n_t} + \frac{\min\{\mu, \nu\}}{2}\right) \left\|\mathbf{z}_{t+1} - \mathbf{z}^*\right\|^2 \leq \frac{1}{2n_t} \left\|\mathbf{z}_t - \mathbf{z}^*\right\|^2 + \varepsilon_t.$$

Proof Sketch.

$$\begin{split} 0 &= -\Delta(\mathbf{z}^*) \leq g(\mathbf{z}_{t+1}) - g(\mathbf{z}^*) + h(\mathbf{x}_{t+1}, \mathbf{y}^*) - h(\mathbf{x}^*, \mathbf{y}_{t+1}) \\ &\leq \left\langle \nabla g(\mathbf{z}_t) + \mathcal{H}(\mathbf{z}_{t+1}) + \frac{1}{\eta_t} (\mathbf{z}_{t+1} - \mathbf{z}_t), \mathbf{z}_{t+1} - \mathbf{z}^* \right\rangle - \frac{1}{\eta_t} \left\langle \mathbf{z}_{t+1} - \mathbf{z}_t, \mathbf{z}_{t+1} - \mathbf{z}^* \right\rangle \\ &- \frac{\mu}{2} \left\| \mathbf{x}_{t+1} - \mathbf{x}^* \right\|^2 - \frac{\nu}{2} \left\| \mathbf{y}_{t+1} - \mathbf{y}^* \right\|^2 + \frac{\delta}{2} \left\| \mathbf{z}_{t+1} - \mathbf{z}_t \right\|^2 \\ &\leq \varepsilon_t + \frac{1}{2\eta_t} \left\| \mathbf{x}_t - \mathbf{x}^* \right\|^2 - \left(\frac{1}{2\eta_t} + \frac{\mu}{2} \right) \left\| \mathbf{x}_{t+1} - \mathbf{x}^* \right\|^2 \\ &+ \frac{1}{2\eta_t} \left\| \mathbf{y}_t - \mathbf{y}^* \right\|^2 - \left(\frac{1}{2\eta_t} + \frac{\nu}{2} \right) \left\| \mathbf{y}_{t+1} - \mathbf{y}^* \right\|^2 - \left(\frac{1}{2\eta_t} - \frac{\delta}{2} \right) \left\| \mathbf{z}_{t+1} - \mathbf{z}_t \right\|^2 \,. \end{split}$$

Convergence analysis - outer and inner loops

Lemma 2 (Outer loop)

Let $\eta_t = \eta \in (0, \frac{1}{\delta}]$, for all $t \in [0, T-1] \cap \mathbb{Z}$. Denote $\theta = \frac{\min\{\mu, \nu\}}{\eta^{-1} + \min\{\mu, \nu\}}$. Suppose $\varepsilon_t \leq \frac{\theta\varepsilon}{4\eta}$, for all $t \in [0, T-1] \cap \mathbb{Z}$. In monotone δ -near-zero-sum games, if $T \geq \frac{1}{\theta} \log \frac{2(D_X^2 + D_Y^2)}{\varepsilon}$, then $\|\mathbf{z}_T - \mathbf{z}^*\|^2 \leq \varepsilon$.

Lemma 3 (Inner loop⁹)

Under Assumption 1, at each iteration $t \in [0, T-1] \cap \mathbb{Z}$, for $\eta_t \geq \frac{1}{L}$, the inexact solution $(\mathbf{x}_{t+1}, \mathbf{y}_{t+1})$ in Algorithm 1 can be found with a gradient complexity of

$$\mathcal{O}\left(\frac{L}{\sqrt{\left(\eta_t^{-1} + \mu\right)\left(\eta_t^{-1} + \nu\right)}} \cdot \log\left(\frac{L\left(D_X^2 + D_Y^2\right)}{\varepsilon_t}\right)\right).$$

⁹Kovalev and Gasnikov, "The first optimal algorithm for smooth and strongly-convex-strongly-concave minimax optimization"; Lan and Li, "A Novel Catalyst Scheme for Stochastic Minimax Optimization".

Convergence analysis - outer and inner loops

Lemma 2 (Outer loop)

Let $\eta_t = \eta \in (0, \frac{1}{\delta}]$, for all $t \in [0, T-1] \cap \mathbb{Z}$. Denote $\theta = \frac{\min\{\mu, \nu\}}{\eta^{-1} + \min\{\mu, \nu\}}$. Suppose $\varepsilon_t \leq \frac{\theta \varepsilon}{4\eta}$, for all $t \in [0, T-1] \cap \mathbb{Z}$. In monotone δ -near-zero-sum games, if $T \geq \frac{1}{\theta} \log \frac{2(D_X^2 + D_Y^2)}{\varepsilon}$, then $\|\mathbf{z}_T - \mathbf{z}^*\|^2 \leq \varepsilon$.

Lemma 3 (Inner loop⁹)

Under Assumption 1, at each iteration $t \in [0, T-1] \cap \mathbb{Z}$, for $\eta_t \geq \frac{1}{L}$, the inexact solution $(\mathbf{x}_{t+1}, \mathbf{y}_{t+1})$ in Algorithm 1 can be found with a gradient complexity of

$$\mathcal{O}\left(\frac{L}{\sqrt{\left(\eta_t^{-1} + \underline{\mu}\right)\left(\eta_t^{-1} + \nu\right)}} \cdot \log\left(\frac{L\left(D_X^2 + D_Y^2\right)}{\varepsilon_t}\right)\right) \, .$$

⁹Kovalev and Gasnikov, "The first optimal algorithm for smooth and strongly-convex-strongly-concave minimax optimization"; Lan and Li, "A Novel Catalyst Scheme for Stochastic Minimax Optimization".

Convergence analysis - total gradient complexity

Theorem 1 (Main result)

Denote $\eta=\min\left\{\frac{1}{\delta},\frac{1}{\min\{\mu,\nu\}}\right\}$ and $\theta=\frac{\min\{\mu,\nu\}}{\eta^{-1}+\min\{\mu,\nu\}}$. Let $\eta_t=\eta$ and $\varepsilon_t=\frac{\theta\varepsilon}{4\eta}$, for all $t\in[0,T-1]\cap\mathbb{Z}$. In monotone δ -near-zero-sum games, Algorithm 1 obtains an ε -accurate Nash equilibrium with a gradient complexity of

$$\widetilde{\mathcal{O}}\left(\left(\frac{L}{\sqrt{\mu\nu}} + \frac{L}{\min\{\mu,\nu\}} \cdot \min\left\{1,\sqrt{\frac{\delta}{\mu+\nu}}\right\}\right) \cdot \log^2\left(\frac{1}{\varepsilon}\right)\right).$$

Proof

Multiply outer loop iterations and inner loop gradient complexity.

Remark (Acceleration conditioning)

$$\min\{\mu,\nu\} + \delta \ll \mu + \nu$$

Convergence analysis - total gradient complexity

Theorem 1 (Main result)

Denote $\eta=\min\left\{\frac{1}{\delta},\frac{1}{\min\{\mu,\nu\}}\right\}$ and $\theta=\frac{\min\{\mu,\nu\}}{\eta^{-1}+\min\{\mu,\nu\}}$. Let $\eta_t=\eta$ and $\varepsilon_t=\frac{\theta\varepsilon}{4\eta}$, for all $t\in[0,T-1]\cap\mathbb{Z}$. In monotone δ -near-zero-sum games, Algorithm 1 obtains an ε -accurate Nash equilibrium with a gradient complexity of

$$\widetilde{\mathcal{O}}\left(\left(\frac{L}{\sqrt{\mu\nu}} + \frac{L}{\min\{\mu,\nu\}} \cdot \min\left\{1,\sqrt{\frac{\delta}{\mu+\nu}}\right\}\right) \cdot \log^2\left(\frac{1}{\varepsilon}\right)\right) \,.$$

Proof.

Multiply outer loop iterations and inner loop gradient complexity.

Remark (Acceleration conditioning)

$$\min\{\mu,\nu\} + \delta \ll \mu + \nu.$$

Convergence analysis - total gradient complexity

Theorem 1 (Main result)

Denote $\eta = \min\left\{\frac{1}{\delta}, \frac{1}{\min\{\mu,\nu\}}\right\}$ and $\theta = \frac{\min\{\mu,\nu\}}{\eta^{-1} + \min\{\mu,\nu\}}$. Let $\eta_t = \eta$ and $\varepsilon_t = \frac{\theta\varepsilon}{4\eta}$, for all $t \in [0,T-1] \cap \mathbb{Z}$. In monotone δ -near-zero-sum games, Algorithm 1 obtains an ε -accurate Nash equilibrium with a gradient complexity of

$$\widetilde{\mathcal{O}}\left(\left(\frac{L}{\sqrt{\mu\nu}} + \frac{L}{\min\{\mu,\nu\}} \cdot \min\left\{1,\sqrt{\frac{\delta}{\mu+\nu}}\right\}\right) \cdot \log^2\left(\frac{1}{\varepsilon}\right)\right) \,.$$

Proof.

Multiply outer loop iterations and inner loop gradient complexity.

Remark (Acceleration conditioning)

$$\min\{\mu,\nu\} + \delta \ll \mu + \nu$$
.

Outline for section 4

- Introduction
- 2 New Class
- Algorithm and Analysis
 - Iterative Coupling Linearization
 - Convergence Analysis
- Application Examples
- Numerical Experiments

- ▶ Player 1 maximizes $u_1 = \langle \mathbf{A}\mathbf{x}, \mathbf{y} \rangle + \mathcal{R}(\mathbf{x}, \mathbf{y})$ over $\mathbf{x} \in X$; Player 2 maximizes $u_2 = \langle \mathbf{B}\mathbf{x}, \mathbf{y} \rangle \mathcal{R}(\mathbf{x}, \mathbf{y})$ over $\mathbf{y} \in Y$.
- ▶ $\|A\| \le L$, $\|B\| \le L$; $\left\|\frac{A+B}{2}\right\| \le \beta$;
- \triangleright \mathcal{R} is L-smooth and μ -strongly concave- ν -strongly convex.
- **Examples:** transaction fee, tax rates.
- ► Assume: $\beta \leq \frac{1}{2}\sqrt{\mu\nu}$.
- ► The game is min $\{\frac{\mu}{2}, \frac{\nu}{2}\}$ -strongly monotone.
- ▶ Variational inequality methods: $\widetilde{\mathcal{O}}\left(\frac{L}{\min\{\mu,\nu\}} \cdot \log\left(\frac{1}{\varepsilon}\right)\right)$. 10
- ► Can we directly apply our ICL here? No! $g = -\langle \frac{A+B}{2}x, y \rangle$ is non-convex

 $^{^{10}}$ Tseng, "On linear convergence of iterative methods for the variational inequality problem".

- ▶ Player 1 maximizes $u_1 = \langle \mathbf{A}\mathbf{x}, \mathbf{y} \rangle + \mathcal{R}(\mathbf{x}, \mathbf{y})$ over $\mathbf{x} \in X$; Player 2 maximizes $u_2 = \langle \mathbf{B}\mathbf{x}, \mathbf{y} \rangle \mathcal{R}(\mathbf{x}, \mathbf{y})$ over $\mathbf{y} \in Y$.
- ▶ $\|\mathbf{A}\| \le L$, $\|\mathbf{B}\| \le L$; $\left\|\frac{\mathbf{A} + \mathbf{B}}{2}\right\| \le \beta$;
- \triangleright \mathcal{R} is L-smooth and μ -strongly concave- ν -strongly convex
- **Examples:** transaction fee, tax rates.
- ► Assume: $\beta \leq \frac{1}{2}\sqrt{\mu\nu}$.
- ► The game is min $\{\frac{\mu}{2}, \frac{\nu}{2}\}$ -strongly monotone.
- ▶ Variational inequality methods: $\widetilde{\mathcal{O}}\left(\frac{L}{\min\{\mu,\nu\}} \cdot \log\left(\frac{1}{\varepsilon}\right)\right)$. 10
- ► Can we directly apply our ICL here? No! $g = -\langle A+B x, y \rangle$ is non-convex

¹⁰Tseng, "On linear convergence of iterative methods for the variational inequality problem".

- ▶ Player 1 maximizes $u_1 = \langle \mathbf{A}\mathbf{x}, \mathbf{y} \rangle + \mathcal{R}(\mathbf{x}, \mathbf{y})$ over $\mathbf{x} \in X$; Player 2 maximizes $u_2 = \langle \mathbf{B}\mathbf{x}, \mathbf{y} \rangle \mathcal{R}(\mathbf{x}, \mathbf{y})$ over $\mathbf{y} \in Y$.
- ▶ $\|\mathbf{A}\| \le L$, $\|\mathbf{B}\| \le L$; $\left\|\frac{\mathbf{A} + \mathbf{B}}{2}\right\| \le \beta$;
- \triangleright \mathcal{R} is L-smooth and μ -strongly concave- ν -strongly convex.
- Examples: transaction fee, tax rates.
- ► Assume: $\beta \leq \frac{1}{2}\sqrt{\mu\nu}$.
- ► The game is $\min\{\frac{\mu}{2}, \frac{\nu}{2}\}$ -strongly monotone.
- ▶ Variational inequality methods: $\widetilde{\mathcal{O}}\left(\frac{L}{\min\{\mu,\nu\}} \cdot \log\left(\frac{1}{\varepsilon}\right)\right)$. 10
- ► Can we directly apply our ICL here? No! $g = -\langle \frac{A+B}{2}x, y \rangle$ is non-convex

¹⁰Tseng, "On linear convergence of iterative methods for the variational inequality problem".

- ▶ Player 1 maximizes $u_1 = \langle \mathbf{A}\mathbf{x}, \mathbf{y} \rangle + \mathcal{R}(\mathbf{x}, \mathbf{y})$ over $\mathbf{x} \in X$; Player 2 maximizes $u_2 = \langle \mathbf{B}\mathbf{x}, \mathbf{y} \rangle \mathcal{R}(\mathbf{x}, \mathbf{y})$ over $\mathbf{y} \in Y$.
- ▶ $\|\mathbf{A}\| \le L$, $\|\mathbf{B}\| \le L$; $\left\|\frac{\mathbf{A} + \mathbf{B}}{2}\right\| \le \beta$;
- \triangleright \mathcal{R} is L-smooth and μ -strongly concave- ν -strongly convex.
- **Examples:** transaction fee, tax rates.
- ► Assume: $\beta \leq \frac{1}{2}\sqrt{\mu\nu}$.
- ► The game is min $\{\frac{\mu}{2}, \frac{\nu}{2}\}$ -strongly monotone.
- ▶ Variational inequality methods: $\widetilde{\mathcal{O}}\left(\frac{L}{\min\{\mu,\nu\}} \cdot \log\left(\frac{1}{\varepsilon}\right)\right)$. 10
- ► Can we directly apply our ICL here? No! $g = -\langle \frac{A+B}{2}x, y \rangle$ is non-convex

¹⁰Tseng, "On linear convergence of iterative methods for the variational inequality problem".

- Player 1 maximizes $u_1 = \langle \mathbf{A}\mathbf{x}, \mathbf{y} \rangle + \mathcal{R}(\mathbf{x}, \mathbf{y})$ over $\mathbf{x} \in X$; Player 2 maximizes $u_2 = \langle \mathbf{B}\mathbf{x}, \mathbf{y} \rangle - \mathcal{R}(\mathbf{x}, \mathbf{y})$ over $\mathbf{y} \in Y$.
- ▶ $\|\mathbf{A}\| \le L$, $\|\mathbf{B}\| \le L$; $\left\|\frac{\mathbf{A} + \mathbf{B}}{2}\right\| \le \beta$;
- \triangleright \mathcal{R} is L-smooth and μ -strongly concave- ν -strongly convex.
- **Examples:** transaction fee, tax rates.
- Assume: $\beta \leq \frac{1}{2} \sqrt{\mu \nu}$.
- ► The game is min $\{\frac{\mu}{2}, \frac{\nu}{2}\}$ -strongly monotone.
- ▶ Variational inequality methods: $\widetilde{\mathcal{O}}\left(\frac{L}{\min\{\mu,\nu\}} \cdot \log\left(\frac{1}{\varepsilon}\right)\right)$. 10
- ► Can we directly apply our ICL here? No! $g = -\langle \frac{A+B}{2}x, y \rangle$ is non-convex

¹⁰Tseng, "On linear convergence of iterative methods for the variational inequality problem".

- ▶ Player 1 maximizes $u_1 = \langle \mathbf{A}\mathbf{x}, \mathbf{y} \rangle + \mathcal{R}(\mathbf{x}, \mathbf{y})$ over $\mathbf{x} \in X$; Player 2 maximizes $u_2 = \langle \mathbf{B}\mathbf{x}, \mathbf{y} \rangle \mathcal{R}(\mathbf{x}, \mathbf{y})$ over $\mathbf{y} \in Y$.
- ▶ $\|\mathbf{A}\| \le L$, $\|\mathbf{B}\| \le L$; $\left\|\frac{\mathbf{A} + \mathbf{B}}{2}\right\| \le \beta$;
- \triangleright \mathcal{R} is L-smooth and μ -strongly concave- ν -strongly convex.
- **Examples:** transaction fee, tax rates.
- Assume: $\beta \leq \frac{1}{2} \sqrt{\mu \nu}$.
- ► The game is min $\{\frac{\mu}{2}, \frac{\nu}{2}\}$ -strongly monotone.
- ▶ Variational inequality methods: $\widetilde{\mathcal{O}}\left(\frac{L}{\min\{\mu,\nu\}} \cdot \log\left(\frac{1}{\varepsilon}\right)\right)$. 10
- ► Can we directly apply our ICL here? No! $g = -\langle \frac{A+B}{2}x, y \rangle$ is non-convex

¹⁰Tseng, "On linear convergence of iterative methods for the variational inequality problem".

- ▶ Player 1 maximizes $u_1 = \langle \mathbf{A}\mathbf{x}, \mathbf{y} \rangle + \mathcal{R}(\mathbf{x}, \mathbf{y})$ over $\mathbf{x} \in X$; Player 2 maximizes $u_2 = \langle \mathbf{B}\mathbf{x}, \mathbf{y} \rangle \mathcal{R}(\mathbf{x}, \mathbf{y})$ over $\mathbf{y} \in Y$.
- ▶ $\|\mathbf{A}\| \le L$, $\|\mathbf{B}\| \le L$; $\left\|\frac{\mathbf{A} + \mathbf{B}}{2}\right\| \le \beta$;
- \triangleright \mathcal{R} is L-smooth and μ -strongly concave- ν -strongly convex.
- **Examples:** transaction fee, tax rates.
- Assume: $\beta \leq \frac{1}{2} \sqrt{\mu \nu}$.
- ► The game is min $\{\frac{\mu}{2}, \frac{\nu}{2}\}$ -strongly monotone.
- ▶ Variational inequality methods: $\widetilde{\mathcal{O}}\left(\frac{L}{\min\{\mu,\nu\}} \cdot \log\left(\frac{1}{\varepsilon}\right)\right)$. 10
- ► Can we directly apply our ICL here?

 $^{^{10}\}mathsf{Tseng},$ "On linear convergence of iterative methods for the variational inequality problem".

- ▶ Player 1 maximizes $u_1 = \langle \mathbf{A}\mathbf{x}, \mathbf{y} \rangle + \mathcal{R}(\mathbf{x}, \mathbf{y})$ over $\mathbf{x} \in X$; Player 2 maximizes $u_2 = \langle \mathbf{B}\mathbf{x}, \mathbf{y} \rangle \mathcal{R}(\mathbf{x}, \mathbf{y})$ over $\mathbf{y} \in Y$.
- ▶ $\|\mathbf{A}\| \le L$, $\|\mathbf{B}\| \le L$; $\left\|\frac{\mathbf{A} + \mathbf{B}}{2}\right\| \le \beta$;
- $ightharpoonup \mathcal{R}$ is L-smooth and μ -strongly concave- ν -strongly convex.
- **Examples:** transaction fee, tax rates.
- Assume: $\beta \leq \frac{1}{2}\sqrt{\mu\nu}$.
- ► The game is min $\{\frac{\mu}{2}, \frac{\nu}{2}\}$ -strongly monotone.
- ▶ Variational inequality methods: $\widetilde{\mathcal{O}}\left(\frac{L}{\min\{\mu,\nu\}} \cdot \log\left(\frac{1}{\varepsilon}\right)\right)$. 10
- ► Can we directly apply our ICL here?

No!
$$g = -\langle \frac{A+B}{2}x, y \rangle$$
 is non-convex.

 $^{^{10}\}mathsf{Tseng},$ "On linear convergence of iterative methods for the variational inequality problem".

- ▶ Player 1 maximizes $u_1 = \langle \mathbf{A}\mathbf{x}, \mathbf{y} \rangle + \mathcal{R}(\mathbf{x}, \mathbf{y})$ over $\mathbf{x} \in X$; Player 2 maximizes $u_2 = \langle \mathbf{B}\mathbf{x}, \mathbf{y} \rangle \mathcal{R}(\mathbf{x}, \mathbf{y})$ over $\mathbf{y} \in Y$.
- ▶ $\|\mathbf{A}\| \le L$, $\|\mathbf{B}\| \le L$; $\left\|\frac{\mathbf{A} + \mathbf{B}}{2}\right\| \le \beta$;
- $ightharpoonup \mathcal{R}$ is L-smooth and μ -strongly concave- ν -strongly convex.
- **Examples:** transaction fee, tax rates.
- Assume: $\beta \leq \frac{1}{2}\sqrt{\mu\nu}$.
- ► The game is min $\{\frac{\mu}{2}, \frac{\nu}{2}\}$ -strongly monotone.
- ▶ Variational inequality methods: $\widetilde{\mathcal{O}}\left(\frac{L}{\min\{\mu,\nu\}} \cdot \log\left(\frac{1}{\varepsilon}\right)\right)$. 10
- ► Can we directly apply our ICL here?

No!
$$g = -\langle \frac{A+B}{2}x, y \rangle$$
 is non-convex.

 $^{^{10}\}mathsf{Tseng},$ "On linear convergence of iterative methods for the variational inequality problem".

- ▶ Player 1 maximizes $u_1 = \langle \mathbf{A}\mathbf{x}, \mathbf{y} \rangle + \mathcal{R}(\mathbf{x}, \mathbf{y})$ over $\mathbf{x} \in X$; Player 2 maximizes $u_2 = \langle \mathbf{B}\mathbf{x}, \mathbf{y} \rangle \mathcal{R}(\mathbf{x}, \mathbf{y})$ over $\mathbf{y} \in Y$.
- ▶ $\|\mathbf{A}\| \le L$, $\|\mathbf{B}\| \le L$; $\left\|\frac{\mathbf{A} + \mathbf{B}}{2}\right\| \le \beta$;
- \triangleright \mathcal{R} is L-smooth and μ -strongly concave- ν -strongly convex.
- **Examples:** transaction fee, tax rates.
- Assume: $\beta \leq \frac{1}{2}\sqrt{\mu\nu}$.
- ► The game is min $\{\frac{\mu}{2}, \frac{\nu}{2}\}$ -strongly monotone.
- ▶ Variational inequality methods: $\widetilde{\mathcal{O}}\left(\frac{L}{\min\{\mu,\nu\}}\cdot\log\left(\frac{1}{\varepsilon}\right)\right)$. 10
- ► Can we directly apply our ICL here? **No!** $g = -\left\langle \frac{\mathbf{A} + \mathbf{B}}{2} \mathbf{x}, \mathbf{y} \right\rangle$ is non-convex.

 $^{^{10}\}mbox{Tseng},$ "On linear convergence of iterative methods for the variational inequality problem".

Player 1: $\max_{\mathbf{x} \in X} \widetilde{u}_1(\mathbf{x}, \mathbf{y}) = u_1(\mathbf{x}, \mathbf{y}) - \beta_2 \|\mathbf{y}\|^2$; Player 2: $\max_{\mathbf{y} \in Y} \widetilde{u}_2(\mathbf{x}, \mathbf{y}) = u_2(\mathbf{x}, \mathbf{y}) - \beta_1 \|\mathbf{x}\|^2$. $\widetilde{g}(\mathbf{x}, \mathbf{y}) = \frac{\beta_1}{2} \|\mathbf{x}\|^2 - \left\langle \left(\frac{\mathbf{A} + \mathbf{B}}{2}\right) \mathbf{x}, \mathbf{y} \right\rangle + \frac{\beta_2}{2} \|\mathbf{y}\|^2$.

► Choices of β_1 , β_2 :

If $\beta \le \min\{\frac{\mu}{2}, \frac{\nu}{2}\}$, let $\beta_1 = \beta_2 = \beta$;

If $\frac{\mu}{2} \le \beta \le \frac{\nu}{2}$, let $\beta_1 = \frac{\mu}{2}$ and $\beta_2 = \frac{2\beta^2}{\mu}$;

If $\frac{\nu}{2} \le \beta \le \frac{\mu}{2}$, let $\beta_1 = \frac{2\beta^2}{\nu}$ and $\beta_2 = \frac{\nu}{2}$.

- ▶ We have $\beta_1 \leq \frac{\mu}{2}$, $\beta_2 \leq \frac{\nu}{2}$, and $\sqrt{\beta_1 \beta_2} = \beta$. Therefore, \widetilde{g} is convex and $(\beta_1 + \beta + \beta_2)$ -smooth.
- Our method:

$$\widetilde{\mathcal{O}}\left(\left(\frac{L}{\sqrt{\mu\nu}} + \frac{L}{\min\{\mu,\nu\}} \cdot \frac{\beta}{\sqrt{\mu\nu}}\right) \cdot \log^2\left(\frac{1}{\varepsilon}\right)\right) \,.$$

Player 1: $\max_{\mathbf{x} \in X} \widetilde{u}_1(\mathbf{x}, \mathbf{y}) = u_1(\mathbf{x}, \mathbf{y}) - \beta_2 \|\mathbf{y}\|^2$; Player 2: $\max_{\mathbf{y} \in Y} \widetilde{u}_2(\mathbf{x}, \mathbf{y}) = u_2(\mathbf{x}, \mathbf{y}) - \beta_1 \|\mathbf{x}\|^2$. $\widetilde{g}(\mathbf{x}, \mathbf{y}) = \frac{\beta_1}{2} \|\mathbf{x}\|^2 - \left\langle \left(\frac{\mathbf{A} + \mathbf{B}}{2}\right) \mathbf{x}, \mathbf{y} \right\rangle + \frac{\beta_2}{2} \|\mathbf{y}\|^2$.

- ▶ We have $\beta_1 \leq \frac{\mu}{2}$, $\beta_2 \leq \frac{\nu}{2}$, and $\sqrt{\beta_1 \beta_2} = \beta$. Therefore, \tilde{g} is convex and $(\beta_1 + \beta + \beta_2)$ -smooth
- Our method:

$$\widetilde{\mathcal{O}}\left(\left(\frac{L}{\sqrt{\mu\nu}} + \frac{L}{\min\{\mu,\nu\}} \cdot \frac{\beta}{\sqrt{\mu\nu}}\right) \cdot \log^2\left(\frac{1}{\varepsilon}\right)\right) \,.$$

Player 1: $\max_{\mathbf{x} \in X} \widetilde{u}_1(\mathbf{x}, \mathbf{y}) = u_1(\mathbf{x}, \mathbf{y}) - \beta_2 \|\mathbf{y}\|^2$; Player 2: $\max_{\mathbf{y} \in Y} \widetilde{u}_2(\mathbf{x}, \mathbf{y}) = u_2(\mathbf{x}, \mathbf{y}) - \beta_1 \|\mathbf{x}\|^2$. $\widetilde{g}(\mathbf{x}, \mathbf{y}) = \frac{\beta_1}{2} \|\mathbf{x}\|^2 - \left\langle \left(\frac{\mathbf{A} + \mathbf{B}}{2}\right) \mathbf{x}, \mathbf{y} \right\rangle + \frac{\beta_2}{2} \|\mathbf{y}\|^2$.

▶ Choices of β_1 , β_2 :

If
$$\beta \leq \min\{\frac{\mu}{2}, \frac{\nu}{2}\}$$
, let $\beta_1 = \beta_2 = \beta$;

If
$$\frac{\mu}{2} \le \beta \le \frac{\nu}{2}$$
, let $\beta_1 = \frac{\mu}{2}$ and $\beta_2 = \frac{2\beta^2}{\mu}$;

f
$$\frac{\nu}{2} \leq eta \leq \frac{\mu}{2}$$
, let $eta_1 = \frac{2eta^2}{
u}$ and $eta_2 = \frac{
u}{2}$.

We have $\beta_1 \leq \frac{\mu}{2}$, $\beta_2 \leq \frac{\nu}{2}$, and $\sqrt{\beta_1 \beta_2} = \beta$. Therefore, \tilde{g} is convex and $(\beta_1 + \beta + \beta_2)$ -smooth

Our method:

$$\widetilde{\mathcal{O}}\left(\left(\frac{L}{\sqrt{\mu\nu}} + \frac{L}{\min\{\mu,\nu\}} \cdot \frac{\beta}{\sqrt{\mu\nu}}\right) \cdot \log^2\left(\frac{1}{\varepsilon}\right)\right) \,.$$

Player 1:
$$\max_{\mathbf{x} \in X} \widetilde{u}_1(\mathbf{x}, \mathbf{y}) = u_1(\mathbf{x}, \mathbf{y}) - \beta_2 \|\mathbf{y}\|^2$$
; Player 2: $\max_{\mathbf{y} \in Y} \widetilde{u}_2(\mathbf{x}, \mathbf{y}) = u_2(\mathbf{x}, \mathbf{y}) - \beta_1 \|\mathbf{x}\|^2$. $\widetilde{g}(\mathbf{x}, \mathbf{y}) = \frac{\beta_1}{2} \|\mathbf{x}\|^2 - \left\langle \left(\frac{\mathbf{A} + \mathbf{B}}{2}\right) \mathbf{x}, \mathbf{y} \right\rangle + \frac{\beta_2}{2} \|\mathbf{y}\|^2$.

▶ Choices of β_1 , β_2 :

If
$$\beta \leq \min\{\frac{\mu}{2}, \frac{\nu}{2}\}$$
, let $\beta_1 = \beta_2 = \beta$;
If $\frac{\mu}{2} \leq \beta \leq \frac{\nu}{2}$, let $\beta_1 = \frac{\mu}{2}$ and $\beta_2 = \frac{2\beta^2}{\mu}$;
If $\frac{\nu}{2} \leq \beta \leq \frac{\mu}{2}$, let $\beta_1 = \frac{2\beta^2}{\nu}$ and $\beta_2 = \frac{\nu}{2}$.

- ▶ We have $\beta_1 \leq \frac{\mu}{2}$, $\beta_2 \leq \frac{\nu}{2}$, and $\sqrt{\beta_1 \beta_2} = \beta$. Therefore, \widetilde{g} is convex and $(\beta_1 + \beta + \beta_2)$ -smooth.
- Our method:

$$\widetilde{\mathcal{O}}\left(\left(\frac{L}{\sqrt{\mu\nu}} + \frac{L}{\min\{\mu,\nu\}} \cdot \frac{\beta}{\sqrt{\mu\nu}}\right) \cdot \log^2\left(\frac{1}{\varepsilon}\right)\right) \,.$$

Player 1:
$$\max_{\mathbf{x} \in X} \widetilde{u}_1(\mathbf{x}, \mathbf{y}) = u_1(\mathbf{x}, \mathbf{y}) - \beta_2 \|\mathbf{y}\|^2$$
;
Player 2: $\max_{\mathbf{y} \in Y} \widetilde{u}_2(\mathbf{x}, \mathbf{y}) = u_2(\mathbf{x}, \mathbf{y}) - \beta_1 \|\mathbf{x}\|^2$.
 $\widetilde{g}(\mathbf{x}, \mathbf{y}) = \frac{\beta_1}{2} \|\mathbf{x}\|^2 - \left\langle \left(\frac{\mathbf{A} + \mathbf{B}}{2}\right) \mathbf{x}, \mathbf{y} \right\rangle + \frac{\beta_2}{2} \|\mathbf{y}\|^2$.

▶ Choices of β_1 , β_2 :

If
$$\beta \leq \min\{\frac{\mu}{2}, \frac{\nu}{2}\}$$
, let $\beta_1 = \beta_2 = \beta$;
If $\frac{\mu}{2} \leq \beta \leq \frac{\nu}{2}$, let $\beta_1 = \frac{\mu}{2}$ and $\beta_2 = \frac{2\beta^2}{\mu}$;
If $\frac{\nu}{2} < \beta < \frac{\mu}{2}$, let $\beta_1 = \frac{2\beta^2}{2}$ and $\beta_2 = \frac{\nu}{2}$.

• We have $\beta_1 \leq \frac{\mu}{2}$, $\beta_2 \leq \frac{\nu}{2}$, and $\sqrt{\beta_1 \beta_2} = \beta$.

Therefore, \tilde{g} is convex and $(\beta_1 + \beta + \beta_2)$ -smooth.

Our method:

$$\widetilde{\mathcal{O}}\left(\left(\frac{L}{\sqrt{\mu\nu}} + \frac{L}{\min\{\mu,\nu\}} \cdot \frac{\beta}{\sqrt{\mu\nu}}\right) \cdot \log^2\left(\frac{1}{\varepsilon}\right)\right) \,.$$

Player 1:
$$\max_{\mathbf{x} \in X} \widetilde{u}_1(\mathbf{x}, \mathbf{y}) = u_1(\mathbf{x}, \mathbf{y}) - \beta_2 \|\mathbf{y}\|^2$$
; Player 2: $\max_{\mathbf{y} \in Y} \widetilde{u}_2(\mathbf{x}, \mathbf{y}) = u_2(\mathbf{x}, \mathbf{y}) - \beta_1 \|\mathbf{x}\|^2$. $\widetilde{g}(\mathbf{x}, \mathbf{y}) = \frac{\beta_1}{2} \|\mathbf{x}\|^2 - \left\langle \left(\frac{\mathbf{A} + \mathbf{B}}{2}\right) \mathbf{x}, \mathbf{y} \right\rangle + \frac{\beta_2}{2} \|\mathbf{y}\|^2$.

▶ Choices of β_1 , β_2 :

If
$$\beta \leq \min\{\frac{\mu}{2}, \frac{\nu}{2}\}$$
, let $\beta_1 = \beta_2 = \beta$;
If $\frac{\mu}{2} \leq \beta \leq \frac{\nu}{2}$, let $\beta_1 = \frac{\mu}{2}$ and $\beta_2 = \frac{2\beta^2}{\mu}$;
If $\frac{\nu}{2} < \beta < \frac{\mu}{2}$, let $\beta_1 = \frac{2\beta^2}{\mu}$ and $\beta_2 = \frac{\nu}{2}$.

• We have $\beta_1 \leq \frac{\mu}{2}$, $\beta_2 \leq \frac{\nu}{2}$, and $\sqrt{\beta_1 \beta_2} = \beta$.

Therefore, \tilde{g} is convex and $(\beta_1 + \beta + \beta_2)$ -smooth.

Our method:

$$\widetilde{\mathcal{O}}\left(\left(\frac{L}{\sqrt{\mu\nu}} + \frac{L}{\min\{\mu,\nu\}} \cdot \frac{\beta}{\sqrt{\mu\nu}}\right) \cdot \log^2\left(\frac{1}{\varepsilon}\right)\right).$$

Player 1:
$$\max_{\mathbf{x} \in X} \widetilde{u}_1(\mathbf{x}, \mathbf{y}) = u_1(\mathbf{x}, \mathbf{y}) - \beta_2 \|\mathbf{y}\|^2$$
;
Player 2: $\max_{\mathbf{y} \in Y} \widetilde{u}_2(\mathbf{x}, \mathbf{y}) = u_2(\mathbf{x}, \mathbf{y}) - \beta_1 \|\mathbf{x}\|^2$.
 $\widetilde{g}(\mathbf{x}, \mathbf{y}) = \frac{\beta_1}{2} \|\mathbf{x}\|^2 - \left\langle \left(\frac{\mathbf{A} + \mathbf{B}}{2}\right) \mathbf{x}, \mathbf{y} \right\rangle + \frac{\beta_2}{2} \|\mathbf{y}\|^2$.

▶ Choices of β_1 , β_2 :

If
$$\beta \leq \min\{\frac{\nu}{2}, \frac{\nu}{2}\}$$
, let $\beta_1 = \beta_2 = \beta$;
If $\frac{\mu}{2} \leq \beta \leq \frac{\nu}{2}$, let $\beta_1 = \frac{\mu}{2}$ and $\beta_2 = \frac{2\beta^2}{\mu}$;
If $\frac{\nu}{2} \leq \beta \leq \frac{\mu}{2}$, let $\beta_1 = \frac{2\beta^2}{\mu}$ and $\beta_2 = \frac{\nu}{2}$.

- ▶ We have $\beta_1 \leq \frac{\mu}{2}$, $\beta_2 \leq \frac{\nu}{2}$, and $\sqrt{\beta_1 \beta_2} = \beta$. Therefore, \widetilde{g} is convex and $(\beta_1 + \beta + \beta_2)$ -smooth.
- Our method:

$$\widetilde{\mathcal{O}}\left(\left(\frac{L}{\sqrt{\mu\nu}} + \frac{L}{\min\{\mu,\nu\}} \cdot \frac{\beta}{\sqrt{\mu\nu}}\right) \cdot \log^2\left(\frac{1}{\varepsilon}\right)\right) \,.$$

Player 1: $\max_{\mathbf{x} \in X} \widetilde{u}_1(\mathbf{x}, \mathbf{y}) = u_1(\mathbf{x}, \mathbf{y}) - \beta_2 \|\mathbf{y}\|^2$; Player 2: $\max_{\mathbf{y} \in Y} \widetilde{u}_2(\mathbf{x}, \mathbf{y}) = u_2(\mathbf{x}, \mathbf{y}) - \beta_1 \|\mathbf{x}\|^2$. $\widetilde{g}(\mathbf{x}, \mathbf{y}) = \frac{\beta_1}{2} \|\mathbf{x}\|^2 - \left\langle \left(\frac{\mathbf{A} + \mathbf{B}}{2}\right) \mathbf{x}, \mathbf{y} \right\rangle + \frac{\beta_2}{2} \|\mathbf{y}\|^2$.

▶ Choices of β_1 , β_2 :

If
$$\beta \leq \min\{\frac{\nu}{2}, \frac{\nu}{2}\}$$
, let $\beta_1 = \beta_2 = \beta$;
If $\frac{\mu}{2} \leq \beta \leq \frac{\nu}{2}$, let $\beta_1 = \frac{\mu}{2}$ and $\beta_2 = \frac{2\beta^2}{\mu}$;
If $\frac{\nu}{2} \leq \beta \leq \frac{\mu}{2}$, let $\beta_1 = \frac{2\beta^2}{\mu}$ and $\beta_2 = \frac{\nu}{2}$.

- ▶ We have $\beta_1 \leq \frac{\mu}{2}$, $\beta_2 \leq \frac{\nu}{2}$, and $\sqrt{\beta_1 \beta_2} = \beta$. Therefore, \tilde{g} is convex and $(\beta_1 + \beta + \beta_2)$ -smooth.
- Our method:

$$\widetilde{\mathcal{O}}\left(\left(\frac{L}{\sqrt{\underline{\mu}\nu}} + \frac{L}{\min\{\underline{\mu},\nu\}} \cdot \frac{\beta}{\sqrt{\underline{\mu}\nu}}\right) \cdot \log^2\left(\frac{1}{\varepsilon}\right)\right) \,.$$

Strictly competitive games with additional incentives

- Player 1 maximizes $u_1 = -g(\mathbf{x}, \mathbf{y}) h(\mathbf{x}, \mathbf{y})$ over $\mathbf{x} \in X$; Player 2 maximizes $u_2 = -g(\mathbf{x}, \mathbf{y}) + h(\mathbf{x}, \mathbf{y})$ over $\mathbf{y} \in Y$.
- ▶ *h* is the **competition payoff**, which is *L*-smooth and μ -strongly convex- ν -strongly concave;
- **g** is the **additional incentive**, which is β -smooth.
- **Example:** co-opetition¹¹.
- ▶ **Assume:** g is convex and $\beta = o\left(\max\{\frac{\mu}{2}, \frac{\nu}{2}\}\right)$;
- ▶ Variational inequality methods: $\widetilde{\mathcal{O}}\left(\frac{L}{\min\{\mu,\nu\}} \cdot \log\left(\frac{1}{\varepsilon}\right)\right)$. 12

¹²Tseng, "On linear convergence of iterative methods for the variational inequality problem".

¹¹Adam M Brandenburger and Barry J Nalebuff. *Co-opetition*. Crown Currency, 2011.

- Player 1 maximizes $u_1 = -g(\mathbf{x}, \mathbf{y}) h(\mathbf{x}, \mathbf{y})$ over $\mathbf{x} \in X$; Player 2 maximizes $u_2 = -g(\mathbf{x}, \mathbf{y}) + h(\mathbf{x}, \mathbf{y})$ over $\mathbf{y} \in Y$.
- ▶ h is the **competition payoff**, which is L-smooth and μ -strongly convex- ν -strongly concave;
- ightharpoonup g is the **additional incentive**, which is β -smooth.
- **Example:** co-opetition¹¹.
- ▶ **Assume:** g is convex and $\beta = o\left(\max\{\frac{\mu}{2}, \frac{\nu}{2}\}\right)$;
- ▶ Or assume: $\beta = o\left(\min\{\frac{\mu}{2}, \frac{\nu}{2}\}\right)$.
- ▶ Variational inequality methods: $\widetilde{\mathcal{O}}\left(\frac{L}{\min\{\mu,\nu\}} \cdot \log\left(\frac{1}{\varepsilon}\right)\right)$. 12

¹¹Brandenburger and Nalebuff, Co-opetition

 $^{^{12}}$ Tseng, "On linear convergence of iterative methods for the variational inequality problem".

- Player 1 maximizes $u_1 = -g(\mathbf{x}, \mathbf{y}) h(\mathbf{x}, \mathbf{y})$ over $\mathbf{x} \in X$; Player 2 maximizes $u_2 = -g(\mathbf{x}, \mathbf{y}) + h(\mathbf{x}, \mathbf{y})$ over $\mathbf{y} \in Y$.
- ▶ *h* is the **competition payoff**, which is *L*-smooth and μ -strongly convex- ν -strongly concave;
- **g** is the **additional incentive**, which is β -smooth.
- **Example:** co-opetition¹¹.
- ► **Assume:** g is convex and $\beta = o\left(\max\{\frac{\mu}{2}, \frac{\nu}{2}\}\right)$;
- ▶ Variational inequality methods: $\widetilde{\mathcal{O}}\left(\frac{L}{\min\{\mu,\nu\}} \cdot \log\left(\frac{1}{\varepsilon}\right)\right)$. 12

¹¹Brandenburger and Nalebuff, Co-opetition

 $^{^{12}}$ Tseng, "On linear convergence of iterative methods for the variational inequality problem".

- Player 1 maximizes $u_1 = -g(\mathbf{x}, \mathbf{y}) h(\mathbf{x}, \mathbf{y})$ over $\mathbf{x} \in X$; Player 2 maximizes $u_2 = -g(\mathbf{x}, \mathbf{y}) + h(\mathbf{x}, \mathbf{y})$ over $\mathbf{y} \in Y$.
- ▶ h is the **competition payoff**, which is L-smooth and μ -strongly convex- ν -strongly concave;
- **g** is the **additional incentive**, which is β -smooth.
- **Example:** co-opetition¹¹.
- ► **Assume:** g is convex and $\beta = o\left(\max\{\frac{\mu}{2}, \frac{\nu}{2}\}\right)$;
- ▶ Variational inequality methods: $\widetilde{\mathcal{O}}\left(\frac{L}{\min\{\mu,\nu\}} \cdot \log\left(\frac{1}{\varepsilon}\right)\right)$. 12

¹¹Brandenburger and Nalebuff, Co-opetition.

¹²Tseng, "On linear convergence of iterative methods for the variational inequality problem".

- Player 1 maximizes $u_1 = -g(\mathbf{x}, \mathbf{y}) h(\mathbf{x}, \mathbf{y})$ over $\mathbf{x} \in X$; Player 2 maximizes $u_2 = -g(\mathbf{x}, \mathbf{y}) + h(\mathbf{x}, \mathbf{y})$ over $\mathbf{y} \in Y$.
- ▶ *h* is the **competition payoff**, which is *L*-smooth and μ -strongly convex- ν -strongly concave;
- **g** is the **additional incentive**, which is β -smooth.
- **Example:** co-opetition¹¹.
- ▶ **Assume:** g is convex and $\beta = o\left(\max\{\frac{\mu}{2}, \frac{\nu}{2}\}\right)$;
- ▶ Or assume: $\beta = o\left(\min\{\frac{\mu}{2}, \frac{\nu}{2}\}\right)$.
- ▶ Variational inequality methods: $\widetilde{\mathcal{O}}\left(\frac{L}{\min\{\mu,\nu\}} \cdot \log\left(\frac{1}{\varepsilon}\right)\right)$. 12

¹¹Brandenburger and Nalebuff, Co-opetition.

 $^{^{12}}$ Tseng, "On linear convergence of iterative methods for the variational inequality problem".

- Player 1 maximizes $u_1 = -g(\mathbf{x}, \mathbf{y}) h(\mathbf{x}, \mathbf{y})$ over $\mathbf{x} \in X$; Player 2 maximizes $u_2 = -g(\mathbf{x}, \mathbf{y}) + h(\mathbf{x}, \mathbf{y})$ over $\mathbf{y} \in Y$.
- ▶ *h* is the **competition payoff**, which is *L*-smooth and μ -strongly convex- ν -strongly concave;
- **g** is the **additional incentive**, which is β -smooth.
- **Example:** co-opetition¹¹.
- ▶ **Assume:** g is convex and $\beta = o\left(\max\{\frac{\mu}{2}, \frac{\nu}{2}\}\right)$;
- $\qquad \qquad \mathbf{Or \ assume:} \ \beta = o\left(\min\{\frac{\mu}{2}, \frac{\nu}{2}\}\right).$
- ▶ Variational inequality methods: $\widetilde{\mathcal{O}}\left(\frac{L}{\min\{\mu,\nu\}} \cdot \log\left(\frac{1}{\varepsilon}\right)\right)$. 12

¹¹Brandenburger and Nalebuff, Co-opetition.

¹²Tseng, "On linear convergence of iterative methods for the variational inequality problem".

- Player 1 maximizes $u_1 = -g(\mathbf{x}, \mathbf{y}) h(\mathbf{x}, \mathbf{y})$ over $\mathbf{x} \in X$; Player 2 maximizes $u_2 = -g(\mathbf{x}, \mathbf{y}) + h(\mathbf{x}, \mathbf{y})$ over $\mathbf{y} \in Y$.
- ▶ h is the **competition payoff**, which is L-smooth and μ -strongly convex- ν -strongly concave;
- **g** is the **additional incentive**, which is β -smooth.
- **Example:** co-opetition¹¹.
- ▶ **Assume:** g is convex and $\beta = o\left(\max\{\frac{\mu}{2}, \frac{\nu}{2}\}\right)$;
- Or assume: $\beta = o\left(\min\left\{\frac{\mu}{2}, \frac{\nu}{2}\right\}\right)$.
- ▶ Variational inequality methods: $\widetilde{\mathcal{O}}\left(\frac{L}{\min\{\mu,\nu\}} \cdot \log\left(\frac{1}{\varepsilon}\right)\right)$. 12

¹¹Brandenburger and Nalebuff, Co-opetition.

 $^{^{12}}$ Tseng, "On linear convergence of iterative methods for the variational inequality problem".

$$\widetilde{\mathcal{O}}\left(\left(\frac{L}{\sqrt{\mu\nu}} + \frac{L}{\min\{\mu,\nu\}} \cdot \sqrt{\frac{\beta}{\mu+\nu}}\right) \cdot \log^2\left(\frac{1}{\varepsilon}\right)\right)$$

Output Consider the case where $\beta = o\left(\min\left\{\frac{\mu}{2}, \frac{\nu}{2}\right\}\right)$ Convex Reformulation:

$$\widetilde{u}_1(\mathsf{x},\mathsf{y}) = u_1(\mathsf{x},\mathsf{y}) - \beta \|\mathsf{y}\|^2; \quad \widetilde{u}_2(\mathsf{x},\mathsf{y}) = u_2(\mathsf{x},\mathsf{y}) - \beta \|\mathsf{x}\|^2$$

Let $\widetilde{g} = -\frac{1}{2}(\widetilde{u}_1 + \widetilde{u}_2)$ and $\widetilde{h} = \frac{1}{2}(-\widetilde{u}_1 + \widetilde{u}_2)$ Then $\widetilde{\sigma}(\cdot)$ is convex and 2β -smooth

Our method:

$$\tilde{\mathcal{O}}\left(\frac{L}{\sqrt{\mu\nu}}\cdot\log^2\left(\frac{1}{\varepsilon}\right)\right)\,.$$

$$\widetilde{\mathcal{O}}\left(\left(\frac{L}{\sqrt{\mu\nu}} + \frac{L}{\min\{\mu,\nu\}} \cdot \sqrt{\frac{\beta}{\mu+\nu}}\right) \cdot \log^2\left(\frac{1}{\varepsilon}\right)\right)$$

• Consider the case where $\beta = o\left(\min\left\{\frac{\mu}{2}, \frac{\nu}{2}\right\}\right)$ Convex Reformulation:

$$\widetilde{u}_1(\mathbf{x}, \mathbf{y}) = u_1(\mathbf{x}, \mathbf{y}) - \beta \|\mathbf{y}\|^2; \quad \widetilde{u}_2(\mathbf{x}, \mathbf{y}) = u_2(\mathbf{x}, \mathbf{y}) - \beta \|\mathbf{x}\|^2$$

Let $\widetilde{g} = -\frac{1}{2}(\widetilde{u}_1 + \widetilde{u}_2)$ and $\widetilde{h} = \frac{1}{2}(-\widetilde{u}_1 + \widetilde{u}_2)$ Then $\widetilde{g}(\cdot)$ is convex and 2β -smooth

Our method:

$$\widetilde{\mathcal{O}}\left(\frac{L}{\sqrt{\mu\nu}}\cdot\log^2\left(\frac{1}{\varepsilon}\right)\right)\,.$$

$$\widetilde{\mathcal{O}}\left(\left(\frac{L}{\sqrt{\underline{\mu}\nu}} + \frac{L}{\min\{\underline{\mu},\nu\}} \cdot \sqrt{\frac{\beta}{\underline{\mu}+\nu}}\right) \cdot \log^2\left(\frac{1}{\varepsilon}\right)\right) \,.$$

• Consider the case where $\beta = o\left(\min\left\{\frac{\mu}{2}, \frac{\nu}{2}\right\}\right)$ Convex Reformulation:

$$\widetilde{u}_1(\mathsf{x},\mathsf{y}) = u_1(\mathsf{x},\mathsf{y}) - \beta \, \|\mathsf{y}\|^2 \, ; \quad \widetilde{u}_2(\mathsf{x},\mathsf{y}) = u_2(\mathsf{x},\mathsf{y}) - \beta \, \|\mathsf{x}\|^2$$

Let $\tilde{g} = -\frac{1}{2}(\tilde{u}_1 + \tilde{u}_2)$ and $\tilde{h} = \frac{1}{2}(-\tilde{u}_1 + \tilde{u}_2)$. Then $\tilde{g}(\cdot)$ is convex and 2β -smooth.

Our method:

$$\widetilde{\mathcal{O}}\left(\frac{L}{\sqrt{\mu\nu}}\cdot\log^2\left(\frac{1}{\varepsilon}\right)\right)$$

$$\widetilde{\mathcal{O}}\left(\left(\frac{L}{\sqrt{\underline{\mu}\nu}} + \frac{L}{\min\{\underline{\mu},\nu\}} \cdot \sqrt{\frac{\beta}{\underline{\mu}+\nu}}\right) \cdot \log^2\left(\frac{1}{\varepsilon}\right)\right) \,.$$

② Consider the case where $\beta = o\left(\min\{\frac{\mu}{2}, \frac{\nu}{2}\}\right)$.

Convex Reformulation:

$$\widetilde{u}_1(\mathbf{x}, \mathbf{y}) = u_1(\mathbf{x}, \mathbf{y}) - \beta \|\mathbf{y}\|^2; \quad \widetilde{u}_2(\mathbf{x}, \mathbf{y}) = u_2(\mathbf{x}, \mathbf{y}) - \beta \|\mathbf{x}\|^2.$$

Let $\widetilde{g} = -\frac{1}{2}(\widetilde{u}_1 + \widetilde{u}_2)$ and $\widetilde{h} = \frac{1}{2}(-\widetilde{u}_1 + \widetilde{u}_2)$.

Then $\widetilde{g}(\cdot)$ is convex and 2β -smooth

Our method:

$$\widetilde{\mathcal{O}}\left(\frac{L}{\sqrt{\mu\nu}} \cdot \log^2\left(\frac{1}{\varepsilon}\right)\right)$$

$$\widetilde{\mathcal{O}}\left(\left(\frac{L}{\sqrt{\underline{\mu}\nu}} + \frac{L}{\min\{\underline{\mu},\nu\}} \cdot \sqrt{\frac{\beta}{\underline{\mu}+\nu}}\right) \cdot \log^2\left(\frac{1}{\varepsilon}\right)\right) \,.$$

② Consider the case where $\beta = o\left(\min\{\frac{\mu}{2}, \frac{\nu}{2}\}\right)$.

Convex Reformulation:

$$\widetilde{u}_1(\mathbf{x}, \mathbf{y}) = u_1(\mathbf{x}, \mathbf{y}) - \beta \|\mathbf{y}\|^2; \quad \widetilde{u}_2(\mathbf{x}, \mathbf{y}) = u_2(\mathbf{x}, \mathbf{y}) - \beta \|\mathbf{x}\|^2.$$

Let $\widetilde{g} = -\frac{1}{2}(\widetilde{u}_1 + \widetilde{u}_2)$ and $\widetilde{h} = \frac{1}{2}(-\widetilde{u}_1 + \widetilde{u}_2)$.

Then $\widetilde{g}(\cdot)$ is convex and 2β -smooth

Our method:

$$\widetilde{\mathcal{O}}\left(\frac{L}{\sqrt{\mu\nu}} \cdot \log^2\left(\frac{1}{\varepsilon}\right)\right)$$

$$\widetilde{\mathcal{O}}\left(\left(\frac{L}{\sqrt{\underline{\mu}\nu}} + \frac{L}{\min\{\underline{\mu},\nu\}} \cdot \sqrt{\frac{\beta}{\underline{\mu}+\nu}}\right) \cdot \log^2\left(\frac{1}{\varepsilon}\right)\right) \,.$$

② Consider the case where $\beta = o\left(\min\{\frac{\mu}{2}, \frac{\nu}{2}\}\right)$. Convex Reformulation:

$$\widetilde{u}_1(\mathbf{x},\mathbf{y}) = u_1(\mathbf{x},\mathbf{y}) - \beta \|\mathbf{y}\|^2; \quad \widetilde{u}_2(\mathbf{x},\mathbf{y}) = u_2(\mathbf{x},\mathbf{y}) - \beta \|\mathbf{x}\|^2.$$

Let $\widetilde{g} = -\frac{1}{2}(\widetilde{u}_1 + \widetilde{u}_2)$ and $\widetilde{h} = \frac{1}{2}(-\widetilde{u}_1 + \widetilde{u}_2)$ Then $\widetilde{g}(\cdot)$ is convex and 2β -smooth.

Our method:

$$\widetilde{\mathcal{O}}\left(\frac{L}{\sqrt{\mu\nu}} \cdot \log^2\left(\frac{1}{\varepsilon}\right)\right)$$

$$\widetilde{\mathcal{O}}\left(\left(\frac{L}{\sqrt{\underline{\mu}\nu}} + \frac{L}{\min\{\underline{\mu},\nu\}} \cdot \sqrt{\frac{\beta}{\underline{\mu}+\nu}}\right) \cdot \log^2\left(\frac{1}{\varepsilon}\right)\right) \,.$$

② Consider the case where $\beta = o\left(\min\{\frac{\mu}{2}, \frac{\nu}{2}\}\right)$. Convex Reformulation:

$$\widetilde{u}_1(\mathbf{x}, \mathbf{y}) = u_1(\mathbf{x}, \mathbf{y}) - \beta \|\mathbf{y}\|^2; \quad \widetilde{u}_2(\mathbf{x}, \mathbf{y}) = u_2(\mathbf{x}, \mathbf{y}) - \beta \|\mathbf{x}\|^2.$$

Let
$$\widetilde{g}=-rac{1}{2}(\widetilde{u}_1+\widetilde{u}_2)$$
 and $\widetilde{h}=rac{1}{2}(-\widetilde{u}_1+\widetilde{u}_2)$.

Then $\widetilde{g}(\cdot)$ is convex and 2β -smooth

Our method:

$$\widetilde{\mathcal{O}}\left(\frac{L}{\sqrt{\mu\nu}} \cdot \log^2\left(\frac{1}{\varepsilon}\right)\right)$$

$$\widetilde{\mathcal{O}}\left(\left(\frac{L}{\sqrt{\underline{\mu}\nu}} + \frac{L}{\min\{\underline{\mu},\nu\}} \cdot \sqrt{\frac{\beta}{\underline{\mu}+\nu}}\right) \cdot \log^2\left(\frac{1}{\varepsilon}\right)\right) \,.$$

② Consider the case where $\beta = o\left(\min\{\frac{\mu}{2}, \frac{\nu}{2}\}\right)$. Convex Reformulation:

$$\widetilde{u}_1(\mathbf{x}, \mathbf{y}) = u_1(\mathbf{x}, \mathbf{y}) - \beta \|\mathbf{y}\|^2; \quad \widetilde{u}_2(\mathbf{x}, \mathbf{y}) = u_2(\mathbf{x}, \mathbf{y}) - \beta \|\mathbf{x}\|^2.$$

Let $\widetilde{g} = -\frac{1}{2}(\widetilde{u}_1 + \widetilde{u}_2)$ and $\widetilde{h} = \frac{1}{2}(-\widetilde{u}_1 + \widetilde{u}_2)$. Then $\widetilde{g}(\cdot)$ is convex and 2β -smooth.

Our method:

$$\widetilde{\mathcal{O}}\left(\frac{L}{\sqrt{\mu\nu}} \cdot \log^2\left(\frac{1}{\varepsilon}\right)\right)$$

$$\widetilde{\mathcal{O}}\left(\left(\frac{L}{\sqrt{\underline{\mu}\nu}} + \frac{L}{\min\{\underline{\mu},\nu\}} \cdot \sqrt{\frac{\beta}{\underline{\mu}+\nu}}\right) \cdot \log^2\left(\frac{1}{\varepsilon}\right)\right) \,.$$

② Consider the case where $\beta = o\left(\min\left\{\frac{\mu}{2}, \frac{\nu}{2}\right\}\right)$. Convex Reformulation:

$$\widetilde{u}_1(\mathbf{x}, \mathbf{y}) = u_1(\mathbf{x}, \mathbf{y}) - \beta \|\mathbf{y}\|^2; \quad \widetilde{u}_2(\mathbf{x}, \mathbf{y}) = u_2(\mathbf{x}, \mathbf{y}) - \beta \|\mathbf{x}\|^2.$$

Let $\widetilde{g} = -\frac{1}{2}(\widetilde{u}_1 + \widetilde{u}_2)$ and $\widetilde{h} = \frac{1}{2}(-\widetilde{u}_1 + \widetilde{u}_2)$. Then $\widetilde{g}(\cdot)$ is convex and 2β -smooth.

Our method:

$$\widetilde{\mathcal{O}}\left(\frac{L}{\sqrt{\mu \nu}} \cdot \log^2\left(\frac{1}{arepsilon}
ight)
ight) \,.$$

$$\widetilde{\mathcal{O}}\left(\left(\frac{L}{\sqrt{\mu\nu}} + \frac{L}{\min\{\mu,\nu\}} \cdot \sqrt{\frac{\beta}{\mu+\nu}}\right) \cdot \log^2\left(\frac{1}{\varepsilon}\right)\right) \,.$$

② Consider the case where $\beta = o\left(\min\left\{\frac{\mu}{2}, \frac{\nu}{2}\right\}\right)$. Convex Reformulation:

$$\widetilde{u}_1(\mathbf{x}, \mathbf{y}) = u_1(\mathbf{x}, \mathbf{y}) - \beta \|\mathbf{y}\|^2; \quad \widetilde{u}_2(\mathbf{x}, \mathbf{y}) = u_2(\mathbf{x}, \mathbf{y}) - \beta \|\mathbf{x}\|^2.$$

Let
$$\widetilde{g} = -\frac{1}{2}(\widetilde{u}_1 + \widetilde{u}_2)$$
 and $\widetilde{h} = \frac{1}{2}(-\widetilde{u}_1 + \widetilde{u}_2)$.

Then $\widetilde{g}(\cdot)$ is convex and 2β -smooth.

Our method:

$$\widetilde{\mathcal{O}}\left(\frac{L}{\sqrt{\mu \nu}} \cdot \log^2\left(\frac{1}{\varepsilon}\right)\right)$$
 .

Outline for section 5

- Introduction
- 2 New Class
- Algorithm and Analysis
 - Iterative Coupling Linearization
 - Convergence Analysis
- Application Examples
- **5** Numerical Experiments

Let $\mathbf{M} \in \mathbb{R}^{m \times n}$ be the payoff matrix of Player 1, and then $-\mathbf{M}$ be the payoff matrix of Player 2, both without transaction fee. A transaction fee of $\rho \in [0,1]$ is imposed on every payment. $\mathbf{M}_{+} = \frac{1}{2}(\mathbf{M} + |\mathbf{M}|), \quad \mathbf{M}_{-} = \frac{1}{2}(-\mathbf{M} + |\mathbf{M}|).$

$$\mathbf{A} = (1 - \rho)\mathbf{M}_{+} - \mathbf{M}_{-}, \quad \mathbf{B} = -\mathbf{M}_{+} + (1 - \rho)\mathbf{M}_{-}.$$

Table 1: Payoff matrices without/with the transaction fee ho=1%

	-200/200
-100/100	400/-400

297/-300	-200/198
-100/99	396/-400

Let $\mathbf{M} \in \mathbb{R}^{m \times n}$ be the payoff matrix of Player 1, and then $-\mathbf{M}$ be the payoff matrix of Player 2, both without transaction fee.

A transaction fee of $\rho \in [0,1]$ is imposed on every payment. $\mathbf{M}_{+} = \frac{1}{2}(\mathbf{M} + |\mathbf{M}|), \quad \mathbf{M}_{-} = \frac{1}{2}(-\mathbf{M} + |\mathbf{M}|).$ The payoff matrices of Player 1 and Player 2 with transaction

$$A = (1 - \rho)M_{+} - M_{-}, \quad B = -M_{+} + (1 - \rho)M_{-}.$$

Table 1: Payoff matrices without/with the transaction fee ho=1%

	-200/200
-100/100	400/-400

297/-300	-200/198
-100/99	396/-400

Let $\mathbf{M} \in \mathbb{R}^{m \times n}$ be the payoff matrix of Player 1, and then $-\mathbf{M}$ be the payoff matrix of Player 2, both *without transaction fee*. A **transaction fee** of $\rho \in [0,1]$ is imposed on every payment.

$$\mathbf{M}_{+}=\frac{1}{2}(\mathbf{M}+|\mathbf{M}|), \quad \mathbf{M}_{-}=\frac{1}{2}(-\mathbf{M}+|\mathbf{M}|).$$
 The payoff matrices of Player 1 and Player 2 with transaction fee are

$$A = (1 - \rho)M_{+} - M_{-}, \quad B = -M_{+} + (1 - \rho)M_{-}.$$

Table 1: Payoff matrices without/with the transaction fee ho=1%

	-200/200
-100/100	400/-400

297/-300	-200/198
-100/99	396/-400

Let $\mathbf{M} \in \mathbb{R}^{m \times n}$ be the payoff matrix of Player 1, and then $-\mathbf{M}$ be the payoff matrix of Player 2, both *without transaction fee*. A **transaction fee** of $\rho \in [0,1]$ is imposed on every payment.

$$M_{+} = \frac{1}{2}(M + |M|), \quad M_{-} = \frac{1}{2}(-M + |M|).$$

The payoff matrices of Player 1 and Player 2 with transaction fee are

$$A = (1 - \rho)M_{+} - M_{-}, \quad B = -M_{+} + (1 - \rho)M_{-}.$$

Table 1: Payoff matrices without/with the transaction fee ho=1%

	-200/200
-100/100	400/-400

297/-300	-200/198
-100/99	396/-400

Preliminary experiments: matrix games with transaction fee

Let $\mathbf{M} \in \mathbb{R}^{m \times n}$ be the payoff matrix of Player 1, and then $-\mathbf{M}$ be the payoff matrix of Player 2, both without transaction fee.

A transaction fee of $\rho \in [0,1]$ is imposed on every payment.

$$M_{+} = \frac{1}{2}(M + |M|), \quad M_{-} = \frac{1}{2}(-M + |M|).$$

The payoff matrices of Player 1 and Player 2 with transaction fee are

$$\mathbf{A} = (1 - \rho)\mathbf{M}_{+} - \mathbf{M}_{-}, \quad \mathbf{B} = -\mathbf{M}_{+} + (1 - \rho)\mathbf{M}_{-}.$$

For instance

Table 1: Payoff matrices without/with the transaction fee ho=1%

	-200/200
-100/100	400/-400

297/-300	-200/198
-100/99	396/-400

Preliminary experiments: matrix games with transaction fee

Let $\mathbf{M} \in \mathbb{R}^{m \times n}$ be the payoff matrix of Player 1, and then $-\mathbf{M}$ be the payoff matrix of Player 2, both without transaction fee.

A transaction fee of $\rho \in [0,1]$ is imposed on every payment.

$$\mathbf{M}_{+} = \frac{1}{2}(\mathbf{M} + |\mathbf{M}|), \quad \mathbf{M}_{-} = \frac{1}{2}(-\mathbf{M} + |\mathbf{M}|).$$

The payoff matrices of Player 1 and Player 2 with transaction fee are

$${\bf A} = (1-
ho){\bf M}_+ - {\bf M}_-, \quad {\bf B} = -{\bf M}_+ + (1-
ho){\bf M}_-.$$

For instance:

Table 1: Payoff matrices without/with the transaction fee $\rho = 1\%$.

300/-300	-200/200			
-100/100	400/-400			

297/-300	-200/198			
-100/99	396/-400			

Let
$$n=m=10000$$
, $\mu=10^{-4}$, $\nu=1$, and $\varepsilon=10^{-7}$.
Let $\mathcal{R}_1=\frac{\mu}{2}\|\cdot\|^2$ and $\mathcal{R}_2=\frac{\nu}{2}\|\cdot\|^2$.

We generate a sparse, random matrix $\mathbf{M} \in \mathbb{R}^{m \times n}$ s.t. $\|\mathbf{M}\| = 1$.

We choose the **transaction fee** ρ from $\{0.00\%, 0.03\%, \cdots, 0.18\%\}$.

Player 1: $\max_{\mathbf{x} \in \Delta_n} u_1(\mathbf{x}, \mathbf{y}) = \mathcal{R}_1(\mathbf{x}) + \langle \mathbf{A}\mathbf{x}, \mathbf{y} \rangle - \mathcal{R}_2(\mathbf{y})$;

Player 2: $\max_{\mathbf{y} \in \Delta_m} u_2(\mathbf{x}, \mathbf{y}) = -\mathcal{R}_1(\mathbf{x}) + \langle \mathbf{B}\mathbf{x}, \mathbf{y} \rangle + \mathcal{R}_2(\mathbf{y})$.

$$\widetilde{\mathcal{O}}\left(\left(\frac{L}{\sqrt{\mu\nu}} + \frac{L}{\min\{\mu,\nu\}} \cdot \frac{\rho \, \||\mathbf{M}|\|}{\sqrt{\mu\nu}}\right) \cdot \log^2\left(\frac{1}{\varepsilon}\right)\right) \, .$$

Let
$$n=m=10000$$
, $\mu=10^{-4}$, $\nu=1$, and $\varepsilon=10^{-7}$.
 Let $\mathcal{R}_1=\frac{\mu}{2}\left\|\cdot\right\|^2$ and $\mathcal{R}_2=\frac{\nu}{2}\left\|\cdot\right\|^2$.
 We generate a sparse, random matrix $\mathbf{M}\in\mathbb{R}^{m\times n}$ s.t. $\|\mathbf{M}\|=1$.

We choose the **transaction fee** ρ from $\{0.00\%, 0.03\%, \dots, 0.18\%\}$.

Player 1:
$$\max_{\mathbf{x} \in \Delta_n} u_1(\mathbf{x}, \mathbf{y}) = \mathcal{R}_1(\mathbf{x}) + \langle \mathbf{A}\mathbf{x}, \mathbf{y} \rangle - \mathcal{R}_2(\mathbf{y})$$
;

Player 2:
$$\max_{\mathbf{y} \in \Delta_m} u_2(\mathbf{x}, \mathbf{y}) = -\mathcal{R}_1(\mathbf{x}) + \langle \mathbf{B} \mathbf{x}, \mathbf{y} \rangle + \mathcal{R}_2(\mathbf{y})$$
.

$$\widetilde{\mathcal{O}}\left(\left(\frac{L}{\sqrt{\mu\nu}} + \frac{L}{\min\{\mu,\nu\}} \cdot \frac{\rho \, ||\mathbf{M}||}{\sqrt{\mu\nu}}\right) \cdot \log^2\left(\frac{1}{\varepsilon}\right)\right) \, .$$

Let
$$n=m=10000$$
, $\mu=10^{-4}$, $\nu=1$, and $\varepsilon=10^{-7}$.
 Let $\mathcal{R}_1=\frac{\mu}{2}\|\cdot\|^2$ and $\mathcal{R}_2=\frac{\nu}{2}\|\cdot\|^2$.
 We generate a sparse, random matrix $\mathbf{M}\in\mathbb{R}^{m\times n}$ s.t. $\|\mathbf{M}\|=1$.
 We choose the **transaction fee** ρ from $\{0.00\%,0.03\%,\cdots,0.18\%\}$.
 Player 1: $\max_{\mathbf{x}\in\Delta_n}u_1(\mathbf{x},\mathbf{y})=\mathcal{R}_1(\mathbf{x})+\langle\mathbf{A}\mathbf{x},\mathbf{y}\rangle-\mathcal{R}_2(\mathbf{y})$;
 Player 2: $\max_{\mathbf{y}\in\Delta_m}u_2(\mathbf{x},\mathbf{y})=-\mathcal{R}_1(\mathbf{x})+\langle\mathbf{B}\mathbf{x},\mathbf{y}\rangle+\mathcal{R}_2(\mathbf{y})$.

$$\widetilde{\mathcal{O}}\left(\left(\frac{L}{\sqrt{\mu\nu}} + \frac{L}{\min\{\mu,\nu\}} \cdot \frac{\rho \, |||\mathbf{M}|||}{\sqrt{\mu\nu}}\right) \cdot \log^2\left(\frac{1}{\varepsilon}\right)\right)$$

Let
$$n=m=10000$$
, $\mu=10^{-4}$, $\nu=1$, and $\varepsilon=10^{-7}$.
 Let $\mathcal{R}_1=\frac{\mu}{2}\,\|\cdot\|^2$ and $\mathcal{R}_2=\frac{\nu}{2}\,\|\cdot\|^2$.
 We generate a sparse, random matrix $\mathbf{M}\in\mathbb{R}^{m\times n}$ s.t. $\|\mathbf{M}\|=1$.
 We choose the **transaction fee** ρ from $\{0.00\%,0.03\%,\cdots,0.18\%\}$.
 Player 1: $\max_{\mathbf{x}\in\Delta_n}u_1(\mathbf{x},\mathbf{y})=\mathcal{R}_1(\mathbf{x})+\langle\mathbf{A}\mathbf{x},\mathbf{y}\rangle-\mathcal{R}_2(\mathbf{y})$;
 Player 2: $\max_{\mathbf{y}\in\Delta_m}u_2(\mathbf{x},\mathbf{y})=-\mathcal{R}_1(\mathbf{x})+\langle\mathbf{B}\mathbf{x},\mathbf{y}\rangle+\mathcal{R}_2(\mathbf{y})$.

$$\widetilde{\mathcal{O}}\left(\left(\frac{L}{\sqrt{\mu\nu}} + \frac{L}{\min\{\mu,\nu\}} \cdot \frac{\rho \, |||\mathbf{M}|||}{\sqrt{\mu\nu}}\right) \cdot \log^2\left(\frac{1}{\varepsilon}\right)\right)$$

Let
$$n=m=1000$$
, $\mu=10^{-4}$, $\nu=1$, and $\varepsilon=10^{-7}$.
Let $\mathcal{R}_1=\frac{\mu}{2}\|\cdot\|^2$ and $\mathcal{R}_2=\frac{\nu}{2}\|\cdot\|^2$.
We generate a sparse, random matrix $\mathbf{M}\in\mathbb{R}^{m\times n}$ s.t. $\|\mathbf{M}\|=1$.
We choose the **transaction fee** ρ from $\{0.00\%,0.03\%,\cdots,0.18\%\}$.
Player 1: $\max_{\mathbf{x}\in\Delta_n}u_1(\mathbf{x},\mathbf{y})=\mathcal{R}_1(\mathbf{x})+\langle\mathbf{A}\mathbf{x},\mathbf{y}\rangle-\mathcal{R}_2(\mathbf{y})$;
Player 2: $\max_{\mathbf{y}\in\Delta_m}u_2(\mathbf{x},\mathbf{y})=-\mathcal{R}_1(\mathbf{x})+\langle\mathbf{B}\mathbf{x},\mathbf{y}\rangle+\mathcal{R}_2(\mathbf{y})$.

$$\widetilde{\mathcal{O}}\left(\left(\frac{L}{\sqrt{\mu\nu}} + \frac{L}{\min\{\mu,\nu\}} \cdot \frac{\rho \, \||\mathbf{M}|\|}{\sqrt{\mu\nu}}\right) \cdot \log^2\left(\frac{1}{\varepsilon}\right)\right) \, .$$

Matrix games with transaction fee - numerical results

Table 2: Gradient queries (in thousands) for ε -Nash under various transaction fees.

	0.00%	0.03%	0.06%	0.09%	0.12%	0.15%	0.18%
ICL (Algorithm 1)	$\textbf{9.1} \pm \textbf{0.0}$	$\textbf{22.6} \pm \textbf{0.4}$	$\textbf{42.2} \pm \textbf{0.3}$	$\textbf{65.0} \pm \textbf{0.3}$	$\textbf{75.7} \pm \textbf{0.3}$	113.7 ± 0.7	123.8 ± 0.6
OGDA ¹³	93.9 ± 0.5	93.9 ± 0.5	93.9 ± 0.5	93.9 ± 0.5	93.9 ± 0.5	$\textbf{94.0} \pm \textbf{0.6}$	$\textbf{94.0} \pm \textbf{0.6}$
EG ¹⁴	132.9 ± 0.8	132.9 ± 0.8	132.9 ± 0.8	132.9 ± 0.8	132.9 ± 0.8	132.9 ± 0.8	132.9 ± 0.8

Remark (Acceleration conditioning)

In experiments: $\rho \leq 0.12\%$; In theory: $\rho \ll \sqrt{\mu\nu} = 1\%$.

¹³Leonid Denisovich Popov. "A modification of the Arrow-Hurwitz method of search for saddle points". In: *Mat. Zametki* 28.5 (1980), pp. 777–784.

¹⁴Galina M Korpelevich. "The extragradient method for finding saddle points and other problems". In: *Matecon* 12 (1976), pp. 747–756.

Matrix games with transaction fee - numerical results

Table 2: Gradient queries (in thousands) for ε -Nash under various transaction fees.

Transaction Fee ρ Methods	0.00%	0.03%	0.06%	0.09%	0.12%	0.15%	0.18%
ICL (Algorithm 1)	$\textbf{9.1} \pm \textbf{0.0}$	$\textbf{22.6} \pm \textbf{0.4}$	$\textbf{42.2} \pm \textbf{0.3}$	$\textbf{65.0} \pm \textbf{0.3}$	$\textbf{75.7} \pm \textbf{0.3}$	113.7 ± 0.7	123.8 ± 0.6
OGDA ¹³	93.9 ± 0.5	93.9 ± 0.5	93.9 ± 0.5	93.9 ± 0.5	93.9 ± 0.5	$\textbf{94.0} \pm \textbf{0.6}$	$\textbf{94.0} \pm \textbf{0.6}$
EG ¹⁴	132.9 ± 0.8	132.9 ± 0.8	132.9 ± 0.8	132.9 ± 0.8	132.9 ± 0.8	132.9 ± 0.8	132.9 ± 0.8

Remark (Acceleration conditioning)

In experiments: $\rho \leq 0.12\%$; In theory: $\rho \ll \sqrt{\mu\nu} = 1\%$.

¹³Popov, "A modification of the Arrow-Hurwitz method of search for saddle points".

¹⁴Korpelevich, "The extragradient method for finding saddle points and other problems".

Convergence plot

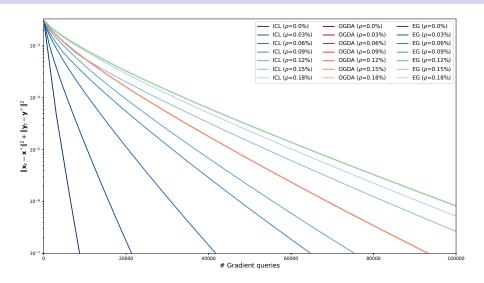


Figure 1: Comparisons of the convergence of the ICL, OGDA, and EG methods.

In this work:

- ▶ We define a new, intermediate class of *monotone near-zero-sum games*;
- ▶ We propose Iterative Coupling Linearization (ICL), which is faster when the game is *near-zero-sum* and with imbalanced conditioning;
- We apply our method to regularized matrix games and competitive games with small additional incentives.

- Lower complexity bounds;
- Removal of the double logarithm
- ► Non-Euclidean spaces (Mirror Prox¹⁵)
- Applications in other practical settings

 $^{^{15}}$ Nemirovski, "Prox-method with rate of convergence O (1/t) for variational inequalities with Lipschitz continuous monotone operators and smooth convex-concaves saddle point problems".

In this work:

- ▶ We define a new, intermediate class of monotone near-zero-sum games;
- ▶ We propose Iterative Coupling Linearization (ICL), which is faster when the game is *near-zero-sum* and with imbalanced conditioning;
- ▶ We apply our method to regularized matrix games and competitive games with small additional incentives.

- Lower complexity bounds;
- Removal of the double logarithm
- ▶ Non-Euclidean spaces (Mirror Prox¹⁵)
- Applications in other practical settings.

¹⁵Nemirovski, "Prox-method with rate of convergence O (1/t) for variational inequalities with Lipschitz continuous monotone operators and smooth convex-concave saddle point problems".

In this work:

- ▶ We define a new, intermediate class of *monotone near-zero-sum games*;
- ▶ We propose Iterative Coupling Linearization (ICL), which is faster when the game is *near-zero-sum* and with imbalanced conditioning;
- ▶ We apply our method to regularized matrix games and competitive games with small additional incentives.

- Lower complexity bounds;
- Removal of the double logarithm
- Non-Euclidean spaces (Mirror Prox¹⁵)
- Applications in other practical settings.

 $^{^{15}}$ Nemirovski, "Prox-method with rate of convergence O (1/t) for variational inequalities with Lipschitz continuous monotone operators and smooth convex-concave saddle point problems".

In this work:

- ▶ We define a new, intermediate class of *monotone near-zero-sum games*;
- ▶ We propose Iterative Coupling Linearization (ICL), which is faster when the game is *near-zero-sum* and with imbalanced conditioning;
- ▶ We apply our method to regularized matrix games and competitive games with small additional incentives.

- Lower complexity bounds;
- Removal of the double logarithm
- Non-Euclidean spaces (Mirror Prox¹⁵)
- Applications in other practical settings.

 $^{^{15}}$ Nemirovski, "Prox-method with rate of convergence O (1/t) for variational inequalities with Lipschitz continuous monotone operators and smooth convex-concave saddle point problems".

In this work:

- ▶ We define a new, intermediate class of *monotone near-zero-sum games*;
- ▶ We propose Iterative Coupling Linearization (ICL), which is faster when the game is *near-zero-sum* and with imbalanced conditioning;
- ▶ We apply our method to regularized matrix games and competitive games with small additional incentives.

- Lower complexity bounds;
- ► Removal of the double logarithm;
- ► Non-Euclidean spaces (Mirror Prox¹⁵);
- ► Applications in other practical settings.

 $^{^{15}}$ Nemirovski, "Prox-method with rate of convergence O (1/t) for variational inequalities with Lipschitz continuous monotone operators and smooth convex-concave saddle point problems".

In this work:

- ▶ We define a new, intermediate class of monotone near-zero-sum games;
- ▶ We propose Iterative Coupling Linearization (ICL), which is faster when the game is *near-zero-sum* and with imbalanced conditioning;
- ▶ We apply our method to regularized matrix games and competitive games with small additional incentives.

- Lower complexity bounds;
- Removal of the double logarithm;
- ► Non-Euclidean spaces (Mirror Prox¹⁵);
- ▶ Applications in other practical settings.

 $^{^{15}}$ Nemirovski, "Prox-method with rate of convergence O (1/t) for variational inequalities with Lipschitz continuous monotone operators and smooth convex-concave saddle point problems".

In this work:

- ▶ We define a new, intermediate class of monotone near-zero-sum games;
- ▶ We propose Iterative Coupling Linearization (ICL), which is faster when the game is *near-zero-sum* and with imbalanced conditioning;
- ▶ We apply our method to regularized matrix games and competitive games with small additional incentives.

- Lower complexity bounds;
- Removal of the double logarithm;
- ▶ Non-Euclidean spaces (Mirror Prox¹⁵);
- ► Applications in other practical settings.

 $^{^{15}}$ Nemirovski, "Prox-method with rate of convergence O (1/t) for variational inequalities with Lipschitz continuous monotone operators and smooth convex-concave saddle point problems".

In this work:

- ▶ We define a new, intermediate class of monotone near-zero-sum games;
- ▶ We propose Iterative Coupling Linearization (ICL), which is faster when the game is *near-zero-sum* and with imbalanced conditioning;
- ▶ We apply our method to regularized matrix games and competitive games with small additional incentives.

- Lower complexity bounds;
- Removal of the double logarithm;
- ▶ Non-Euclidean spaces (Mirror Prox¹⁵);
- ► Applications in other practical settings.

 $^{^{15}}$ Nemirovski, "Prox-method with rate of convergence O (1/t) for variational inequalities with Lipschitz continuous monotone operators and smooth convex-concave saddle point problems".