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NEP and VIP
Two-Person Nash Equilibrium Problem (NEP):
▶ Player 1: maxx∈X u1(x, y); Player 2: maxy∈Y u2(x, y).
▶ X and Y are compact and convex; u1 and u2 are L-smooth on X × Y .
▶ Nash equilibrium (x∗, y∗) ∈ X × Y s.t.

u1(x∗, y∗) ≥ u1(x, y∗), for all x ∈ X ,

u2(x∗, y∗) ≥ u2(x∗, y), for all y ∈ Y .

Variational Inequality Problem (VIP):
▶ Operator F : Z → Z .
▶ (Weak) Solution z∗ ∈ Z :

⟨F(z∗), z − z∗⟩ ≥ 0, for all z ∈ Z .

▶ Minimization of smooth convex function g : F = ∇g .
▶ NEP of concave games where u1 (u2) is concave in x (y):

F = − [∇xu1, ∇yu2] .
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Decomposition of two-person games
Reformulation:
▶ u1 = −g − h; u2 = −g + h.
▶ Coupling: g = (−u1 − u2)/2;
▶ Zero-sum: h = (−u1 + u2)/2.

VIP of
F = − [∇xu1, ∇yu2] = ∇g + [∇xh, −∇yh]

≜ ∇g + H.

Zero-sum games (strictly competitive games):
▶ g = 0, or
▶ F = [∇xh, −∇yh] = H.

▶ Minimax optimization:

min
x∈X

max
y∈Y

h(x, y).
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Monotone games

Assumption 1 (convex-concave zero-sum part)

The function h(·, ·) is µ-strongly convex-ν-strongly concave.

Assumption 2 (jointly convex coupling part)

The function g(·, ·) is jointly convex.

Proposition 1
Under Assumptions 1 and 2, F = ∇g + H is min{µ, ν}-strongly monotone.

Proof.
∇g is monotone and H is min{µ, ν}-strongly monotone.

Monotone games: Assumptions 1 and 2.
▶ Monotone (general-sum) games: g is L-smooth;
▶ Monotone zero-sum games: g is 0-smooth.
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A historical overview
▶ Equal conditioning (µ = ν):

Bilinear coupling, zero sum1

General coupling, general sum2 (multi-player)
▶ General conditioning (µ ̸= ν):

Bilinear coupling, zero sum3

General coupling, zero sum4

General coupling, general sum: ?
1Yurii Nesterov. “Smooth minimization of non-smooth functions”. In: Mathematical

programming 103 (2005), pp. 127–152.
2Arkadi Nemirovski. “Prox-method with rate of convergence O (1/t) for variational

inequalities with Lipschitz continuous monotone operators and smooth convex-concave
saddle point problems”. In: SIAM Journal on Optimization 15.1 (2004), pp. 229–251.

3Antonin Chambolle and Thomas Pock. “A first-order primal-dual algorithm for
convex problems with applications to imaging”. In: Journal of mathematical imaging and
vision 40.1 (2011), pp. 120–145; Yunmei Chen, Guanghui Lan, and Yuyuan Ouyang.
“Optimal primal-dual methods for a class of saddle point problems”. In: SIAM Journal on
Optimization 24.4 (2014), pp. 1779–1814; Kiran K. Thekumparampil, Niao He, and
Sewoong Oh. “Lifted Primal-Dual Method for Bilinearly Coupled Smooth Minimax
Optimization”. In: Proceedings of The 25th International Conference on Artificial
Intelligence and Statistics. Ed. by Gustau Camps-Valls, Francisco J. R. Ruiz, and
Isabel Valera. Vol. 151. Proceedings of Machine Learning Research. PMLR, 28–30 Mar
2022, pp. 4281–4308.

4Tianyi Lin, Chi Jin, and Michael I Jordan. “Near-optimal algorithms for minimax
optimization”. In: Conference on Learning Theory. PMLR. 2020, pp. 2738–2779;
Dmitry Kovalev and Alexander Gasnikov. “The first optimal algorithm for smooth and
strongly-convex-strongly-concave minimax optimization”. In: Advances in Neural
Information Processing Systems 35 (2022), pp. 14691–14703; Guanghui Lan and Yan Li.
“A Novel Catalyst Scheme for Stochastic Minimax Optimization”. In: arXiv preprint
arXiv:2311.02814 (2023).
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Gradient complexity for ε-Nash equilibrium

Proposition 2 (Monotone (general-sum) games5)

For monotone games, the gradient complexity is Õ
(

L
min{µ,ν} · log

(
1
ε

))
.

Proposition 3 (Monotone zero-sum games (minimax optimization)6)

For monotone zero-sum games, the gradient complexity is

Õ
(

L
√

µν
· log

(1
ε

))
.

5Paul Tseng. “On linear convergence of iterative methods for the variational inequality
problem”. In: Journal of Computational and Applied Mathematics 60.1-2 (1995),
pp. 237–252.

6Kovalev and Gasnikov, “The first optimal algorithm for smooth and
strongly-convex-strongly-concave minimax optimization”; Lan and Li, “A Novel Catalyst
Scheme for Stochastic Minimax Optimization”.
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New problem class

Assumption 3 (near-zero-sum)

There exists δ ∈ [0, L] such that the function g(·, ·) is δ-smooth.

Definition 1 (Monotone Near-Zero-Sum Games)
A two-person general-sum game is a monotone δ-near-zero-sum game if
it satisfies Assumptions 1 to 3.

We study the NEP of monotone near-zero-sum games, or the VIP of

F(x, y) = ∇g(x, y) + H(x, y)︸ ︷︷ ︸
[∇xh(x,y),−∇yh(x,y)]

, x ∈ X , y ∈ Y , (1)

where X and Y are compact and convex, and
1 ∇g is δ-Lipschitz continuous; H is L-Lipschitz continuous (δ ≤ L);
2 g(x, y) is jointly convex; h is µ-strongly convex-ν-strongly concave.
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An Attempt: Nesterov’s Smoothing

Monotone zero-sum games (u1 + u2 = 0):
▶ hx (x) ≜ −u1(x, y(x)) is µ-strongly-convex,
▶ where y(x) ≜ arg max

y∈Y
u2(x, y).

Nesterov’s smoothing: (assuming µ ≤ ν)

xt+1 ≈ arg min
x∈X

[
hx (x) + ν

2 ∥x − xt∥2
]

.

▶ Total gradient complexity: Õ
(

L√
µν · log2

(
1
ε

))
.

▶ Outer loop: Õ
(√

ν/µ · log
(

1
ε

))
iterations;7

▶ Inner loop: Õ
(

L/ν · log
(

1
ε

))
gradient queries.8

7Nesterov, “Smooth minimization of non-smooth functions”.
8Tseng, “On linear convergence of iterative methods for the variational inequality

problem”.
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(√

ν/µ · log
(

1
ε

))
iterations;7

▶ Inner loop: Õ
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Cannot be directly applied here!

Counterexample for non-zero-sum games:
▶ X = [0, 1] × [1, 2] ⊆ R2 and Y = [−1, 0] ⊆ R;
▶ u1 = −1

2(x1 − 1)2 − 1
2(x2 − 1)2 + 1

2x1y and u2 = 1
2x2y − (y + 1)2.

▶ Converges to the Stackelberg solution: (x =
(

40
63 , 68

63

)
, y = −46

63),

▶ NOT Nash equilibrium: (x =
(

5
8 , 1
)

, y = −3
4).
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Our idea

Potential Function: For all z = (x, y) ∈ X × Y ,

∆(z) def= max
z̃=(̃x,̃y)∈X×Y

g(z) − g(z̃)︸ ︷︷ ︸
jointly convex coupling

+ h(x, ỹ) − h(x̃, y)︸ ︷︷ ︸
convex-concave zero-sum

.

Proposition 4

For all z = (x, y) ∈ X × Y , we have ∆(z) ≥ 0 and

2∆(z) ≥ max
z̃=(̃x,̃y)∈X×Y

u1(x̃, y) − u1(x, y) + u2(x, ỹ) − u2(x, y) .

Proposition 5

Let z∗ ∈ X × Y . Then, z∗ is the Nash equilibrium if and only if ∆(z∗) = 0.
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Our algorithm

Algorithm 1 Iterative Coupling Linearization (ICL)

Require: x0 ∈ X , y0 ∈ Y .
1: for t = 0, 1, · · · , T − 1 do
2: Let

φt(x, y) def= ⟨∇xg(xt , yt), x⟩ + 1
2ηt

∥xt − x∥2 + h(x, y)

− ⟨∇yg(xt , yt), y⟩ − 1
2ηt

∥yt − y∥2
.

3: Find an inexact saddle point zt+1 ∈ X × Y of φt s.t.

⟨∇xφt(zt+1), xt+1 − x⟩ − ⟨∇yφt(zt+1), yt+1 − y⟩ ≤ εt ,

for all x ∈ X and y ∈ Y .
4: end for
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Convergence analysis - descent lemma

Lemma 1 (Descent lemma)

In monotone δ-near-zero-sum games, for ηt ≤ 1
δ , we have(

1
2ηt

+ min{µ, ν}
2

)
∥zt+1 − z∗∥2 ≤ 1

2ηt
∥zt − z∗∥2 + εt .

Proof Sketch.
0 = −∆(z∗) ≤ g(zt+1) − g(z∗) + h(xt+1, y∗) − h(x∗, yt+1)

≤
〈

∇g(zt) + H(zt+1) + 1
ηt

(zt+1 − zt), zt+1 − z∗
〉

− 1
ηt

⟨zt+1 − zt , zt+1 − z∗⟩

− µ

2 ∥xt+1 − x∗∥2 − ν

2 ∥yt+1 − y∗∥2 + δ

2 ∥zt+1 − zt∥2

≤εt + 1
2ηt

∥xt − x∗∥2 −
(

1
2ηt

+ µ

2

)
∥xt+1 − x∗∥2

+ 1
2ηt

∥yt − y∗∥2 −
(

1
2ηt

+ ν

2

)
∥yt+1 − y∗∥2 −

(
1

2ηt
− δ

2

)
∥zt+1 − zt∥2

.
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≤
〈

∇g(zt) + H(zt+1) + 1
ηt

(zt+1 − zt), zt+1 − z∗
〉

− 1
ηt

⟨zt+1 − zt , zt+1 − z∗⟩

− µ

2 ∥xt+1 − x∗∥2 − ν

2 ∥yt+1 − y∗∥2 + δ

2 ∥zt+1 − zt∥2

≤εt + 1
2ηt

∥xt − x∗∥2 −
(

1
2ηt

+ µ

2

)
∥xt+1 − x∗∥2

+ 1
2ηt

∥yt − y∗∥2 −
(

1
2ηt

+ ν

2

)
∥yt+1 − y∗∥2 −

(
1

2ηt
− δ

2

)
∥zt+1 − zt∥2

.
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Convergence analysis - outer and inner loops

Lemma 2 (Outer loop)

Let ηt = η ∈ (0, 1
δ ], for all t ∈ [0, T − 1] ∩ Z. Denote θ = min{µ,ν}

η−1+min{µ,ν} . Suppose
εt ≤ θε

4η , for all t ∈ [0, T − 1] ∩ Z. In monotone δ-near-zero-sum games, if
T ≥ 1

θ log 2(D2
X +D2

Y )
ε , then ∥zT − z∗∥2 ≤ ε.

Lemma 3 (Inner loop9)

Under Assumption 1, at each iteration t ∈ [0, T − 1] ∩ Z, for ηt ≥ 1
L , the inexact

solution (xt+1, yt+1) in Algorithm 1 can be found with a gradient complexity of

O

 L√(
η−1

t + µ
) (

η−1
t + ν

) · log
(

L
(
D2

X + D2
Y
)

εt

) .

9Kovalev and Gasnikov, “The first optimal algorithm for smooth and
strongly-convex-strongly-concave minimax optimization”; Lan and Li, “A Novel Catalyst
Scheme for Stochastic Minimax Optimization”.
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Convergence analysis - total gradient complexity

Theorem 1 (Main result)

Denote η = min
{

1
δ , 1

min{µ,ν}

}
and θ = min{µ,ν}

η−1+min{µ,ν} . Let ηt = η and
εt = θε

4η , for all t ∈ [0, T − 1] ∩ Z. In monotone δ-near-zero-sum games,
Algorithm 1 obtains an ε-accurate Nash equilibrium with a gradient
complexity of

Õ

((
L

√
µν

+ L
min{µ, ν}

· min
{

1,

√
δ

µ + ν

})
· log2

(
1
ε

))
.

Proof.
Multiply outer loop iterations and inner loop gradient complexity.

Remark (Acceleration conditioning)

min{µ, ν} + δ ≪ µ + ν .
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1 Introduction
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3 Algorithm and Analysis
Iterative Coupling Linearization
Convergence Analysis

4 Application Examples

5 Numerical Experiments
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Application 1: Regularized matrix games

▶ Player 1 maximizes u1 = ⟨Ax, y⟩ + R(x, y) over x ∈ X ;
Player 2 maximizes u2 = ⟨Bx, y⟩ − R(x, y) over y ∈ Y .

▶ ∥A∥ ≤ L, ∥B∥ ≤ L;
∥∥∥A+B

2

∥∥∥ ≤ β;
▶ R is L-smooth and µ-strongly concave-ν-strongly convex.

▶ Examples: transaction fee, tax rates.

▶ Assume: β ≤ 1
2
√

µν.
▶ The game is min{µ

2 , ν
2 }-strongly monotone.

▶ Variational inequality methods: Õ
(

L
min{µ,ν} · log

(
1
ε

))
.10

▶ Can we directly apply our ICL here?
No! g = −

〈
A+B

2 x, y
〉

is non-convex.
10Tseng, “On linear convergence of iterative methods for the variational inequality

problem”.
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▶ Convex Reformulation:
Player 1: maxx∈X ũ1(x, y) = u1(x, y) − β2 ∥y∥2;
Player 2: maxy∈Y ũ2(x, y) = u2(x, y) − β1 ∥x∥2.
g̃(x, y) = β1

2 ∥x∥2 −
〈(

A+B
2

)
x, y

〉
+ β2

2 ∥y∥2.
▶ Choices of β1, β2:

If β ≤ min{µ
2 , ν

2 }, let β1 = β2 = β;
If µ

2 ≤ β ≤ ν
2 , let β1 = µ

2 and β2 = 2β2

µ ;
If ν

2 ≤ β ≤ µ
2 , let β1 = 2β2

ν and β2 = ν
2 .

▶ We have β1 ≤ µ
2 , β2 ≤ ν

2 , and
√

β1β2 = β.
Therefore, g̃ is convex and (β1 + β + β2)-smooth.

▶ Our method:

Õ
((

L
√

µν
+ L

min{µ, ν}
· β

√
µν

)
· log2

(1
ε

))
.

Acceleration conditioning: min{µ, ν} + β ≪ √
µν.
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Player 1: maxx∈X ũ1(x, y) = u1(x, y) − β2 ∥y∥2;
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Player 1: maxx∈X ũ1(x, y) = u1(x, y) − β2 ∥y∥2;
Player 2: maxy∈Y ũ2(x, y) = u2(x, y) − β1 ∥x∥2.
g̃(x, y) = β1

2 ∥x∥2 −
〈(

A+B
2

)
x, y

〉
+ β2

2 ∥y∥2.
▶ Choices of β1, β2:

If β ≤ min{µ
2 , ν

2 }, let β1 = β2 = β;
If µ

2 ≤ β ≤ ν
2 , let β1 = µ

2 and β2 = 2β2

µ ;
If ν

2 ≤ β ≤ µ
2 , let β1 = 2β2

ν and β2 = ν
2 .

▶ We have β1 ≤ µ
2 , β2 ≤ ν

2 , and
√

β1β2 = β.
Therefore, g̃ is convex and (β1 + β + β2)-smooth.

▶ Our method:

Õ
((

L
√

µν
+ L

min{µ, ν}
· β

√
µν

)
· log2

(1
ε

))
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Application 2:
Strictly competitive games with additional incentives

▶ Player 1 maximizes u1 = −g(x, y) − h(x, y) over x ∈ X ;
Player 2 maximizes u2 = −g(x, y) + h(x, y) over y ∈ Y .

▶ h is the competition payoff, which is L-smooth and µ-strongly
convex-ν-strongly concave;

▶ g is the additional incentive, which is β-smooth.

▶ Example: co-opetition11.

▶ Assume: g is convex and β = o
(
max{µ

2 , ν
2 }
)
;

▶ Or assume: β = o
(
min{µ

2 , ν
2 }
)
.

▶ Variational inequality methods: Õ
(

L
min{µ,ν} · log

(
1
ε

))
.12

11Adam M Brandenburger and Barry J Nalebuff. Co-opetition. Crown Currency, 2011.
12Tseng, “On linear convergence of iterative methods for the variational inequality

problem”.
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1 Consider the case where g is convex and β = o
(
max{µ

2 , ν
2 }
)
.

Our method:

Õ
((

L
√

µν
+ L

min{µ, ν}
·
√

β

µ + ν

)
· log2

(1
ε

))
.

2 Consider the case where β = o
(
min{µ

2 , ν
2 }
)
.

Convex Reformulation:

ũ1(x, y) = u1(x, y) − β ∥y∥2 ; ũ2(x, y) = u2(x, y) − β ∥x∥2 .

Let g̃ = −1
2(ũ1 + ũ2) and h̃ = 1

2(−ũ1 + ũ2) .
Then g̃(·) is convex and 2β-smooth.
Our method:

Õ
(

L
√

µν
· log2

(1
ε

))
.

NB. This is in sharp contrast to β = o
(

1
2
√

µν
)

in matrix games.
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ũ1(x, y) = u1(x, y) − β ∥y∥2 ; ũ2(x, y) = u2(x, y) − β ∥x∥2 .
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Preliminary experiments:
matrix games with transaction fee

Let M ∈ Rm×n be the payoff matrix of Player 1, and
then −M be the payoff matrix of Player 2, both without transaction fee.
A transaction fee of ρ ∈ [0, 1] is imposed on every payment.
M+ = 1

2(M + |M|), M− = 1
2(−M + |M|) .

The payoff matrices of Player 1 and Player 2 with transaction fee are

A = (1 − ρ)M+ − M−, B = −M+ + (1 − ρ)M− .

For instance:

Table 1: Payoff matrices without/with the transaction fee ρ = 1%.

300/-300 -200/200
-100/100 400/-400

297/-300 -200/198
-100/99 396/-400
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Matrix games with transaction fee - experimental setup

Let n = m = 10000, µ = 10−4, ν = 1, and ε = 10−7.
Let R1 = µ

2 ∥·∥2 and R2 = ν
2 ∥·∥2.

We generate a sparse, random matrix M ∈ Rm×n s.t. ∥M∥ = 1.
We choose the transaction fee ρ from {0.00%, 0.03%, · · · , 0.18%}.
Player 1: maxx∈∆n u1(x, y) = R1(x) + ⟨Ax, y⟩ − R2(y) ;
Player 2: maxy∈∆m u2(x, y) = −R1(x) + ⟨Bx, y⟩ + R2(y) .

Our theory:

Õ
((

L
√

µν
+ L

min{µ, ν}
· ρ ∥|M|∥

√
µν

)
· log2

(1
ε

))
.
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We choose the transaction fee ρ from {0.00%, 0.03%, · · · , 0.18%}.
Player 1: maxx∈∆n u1(x, y) = R1(x) + ⟨Ax, y⟩ − R2(y) ;
Player 2: maxy∈∆m u2(x, y) = −R1(x) + ⟨Bx, y⟩ + R2(y) .

Our theory:

Õ
((

L
√

µν
+ L

min{µ, ν}
· ρ ∥|M|∥

√
µν

)
· log2

(1
ε

))
.
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Matrix games with transaction fee - numerical results

Table 2: Gradient queries (in thousands) for ε-Nash under various transaction fees.

Methods
Transaction Fee ρ 0.00% 0.03% 0.06% 0.09% 0.12% 0.15% 0.18%

ICL (Algorithm 1) 9.1 ± 0.0 22.6 ± 0.4 42.2 ± 0.3 65.0 ± 0.3 75.7 ± 0.3 113.7 ± 0.7 123.8 ± 0.6
OGDA13 93.9 ± 0.5 93.9 ± 0.5 93.9 ± 0.5 93.9 ± 0.5 93.9 ± 0.5 94.0 ± 0.6 94.0 ± 0.6

EG14 132.9 ± 0.8 132.9 ± 0.8 132.9 ± 0.8 132.9 ± 0.8 132.9 ± 0.8 132.9 ± 0.8 132.9 ± 0.8

Remark (Acceleration conditioning)
In experiments: ρ ≤ 0.12%;
In theory: ρ ≪ √

µν = 1%.

13Leonid Denisovich Popov. “A modification of the Arrow-Hurwitz method of search
for saddle points”. In: Mat. Zametki 28.5 (1980), pp. 777–784.

14Galina M Korpelevich. “The extragradient method for finding saddle points and other
problems”. In: Matecon 12 (1976), pp. 747–756.
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Convergence plot
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Figure 1: Comparisons of the convergence of the ICL, OGDA, and EG methods.
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Conclusion

In this work:
▶ We define a new, intermediate class of monotone near-zero-sum games;
▶ We propose Iterative Coupling Linearization (ICL), which is faster when the

game is near-zero-sum and with imbalanced conditioning ;
▶ We apply our method to regularized matrix games and competitive

games with small additional incentives.
Future work:
▶ Lower complexity bounds;
▶ Removal of the double logarithm;
▶ Non-Euclidean spaces (Mirror Prox15);
▶ Applications in other practical settings.

15Nemirovski, “Prox-method with rate of convergence O (1/t) for variational
inequalities with Lipschitz continuous monotone operators and smooth convex-concave
saddle point problems”.

Ruichen Luo (ISTA) Monotone Near-Zero-Sum Games Group Seminar 2025 28 / 28



Conclusion

In this work:
▶ We define a new, intermediate class of monotone near-zero-sum games;
▶ We propose Iterative Coupling Linearization (ICL), which is faster when the

game is near-zero-sum and with imbalanced conditioning ;
▶ We apply our method to regularized matrix games and competitive

games with small additional incentives.
Future work:
▶ Lower complexity bounds;
▶ Removal of the double logarithm;
▶ Non-Euclidean spaces (Mirror Prox15);
▶ Applications in other practical settings.

15Nemirovski, “Prox-method with rate of convergence O (1/t) for variational
inequalities with Lipschitz continuous monotone operators and smooth convex-concave
saddle point problems”.

Ruichen Luo (ISTA) Monotone Near-Zero-Sum Games Group Seminar 2025 28 / 28



Conclusion

In this work:
▶ We define a new, intermediate class of monotone near-zero-sum games;
▶ We propose Iterative Coupling Linearization (ICL), which is faster when the

game is near-zero-sum and with imbalanced conditioning ;
▶ We apply our method to regularized matrix games and competitive

games with small additional incentives.
Future work:
▶ Lower complexity bounds;
▶ Removal of the double logarithm;
▶ Non-Euclidean spaces (Mirror Prox15);
▶ Applications in other practical settings.

15Nemirovski, “Prox-method with rate of convergence O (1/t) for variational
inequalities with Lipschitz continuous monotone operators and smooth convex-concave
saddle point problems”.

Ruichen Luo (ISTA) Monotone Near-Zero-Sum Games Group Seminar 2025 28 / 28



Conclusion

In this work:
▶ We define a new, intermediate class of monotone near-zero-sum games;
▶ We propose Iterative Coupling Linearization (ICL), which is faster when the

game is near-zero-sum and with imbalanced conditioning ;
▶ We apply our method to regularized matrix games and competitive

games with small additional incentives.
Future work:
▶ Lower complexity bounds;
▶ Removal of the double logarithm;
▶ Non-Euclidean spaces (Mirror Prox15);
▶ Applications in other practical settings.

15Nemirovski, “Prox-method with rate of convergence O (1/t) for variational
inequalities with Lipschitz continuous monotone operators and smooth convex-concave
saddle point problems”.

Ruichen Luo (ISTA) Monotone Near-Zero-Sum Games Group Seminar 2025 28 / 28



Conclusion

In this work:
▶ We define a new, intermediate class of monotone near-zero-sum games;
▶ We propose Iterative Coupling Linearization (ICL), which is faster when the

game is near-zero-sum and with imbalanced conditioning ;
▶ We apply our method to regularized matrix games and competitive

games with small additional incentives.
Future work:
▶ Lower complexity bounds;
▶ Removal of the double logarithm;
▶ Non-Euclidean spaces (Mirror Prox15);
▶ Applications in other practical settings.

15Nemirovski, “Prox-method with rate of convergence O (1/t) for variational
inequalities with Lipschitz continuous monotone operators and smooth convex-concave
saddle point problems”.

Ruichen Luo (ISTA) Monotone Near-Zero-Sum Games Group Seminar 2025 28 / 28



Conclusion

In this work:
▶ We define a new, intermediate class of monotone near-zero-sum games;
▶ We propose Iterative Coupling Linearization (ICL), which is faster when the

game is near-zero-sum and with imbalanced conditioning ;
▶ We apply our method to regularized matrix games and competitive

games with small additional incentives.
Future work:
▶ Lower complexity bounds;
▶ Removal of the double logarithm;
▶ Non-Euclidean spaces (Mirror Prox15);
▶ Applications in other practical settings.

15Nemirovski, “Prox-method with rate of convergence O (1/t) for variational
inequalities with Lipschitz continuous monotone operators and smooth convex-concave
saddle point problems”.

Ruichen Luo (ISTA) Monotone Near-Zero-Sum Games Group Seminar 2025 28 / 28



Conclusion

In this work:
▶ We define a new, intermediate class of monotone near-zero-sum games;
▶ We propose Iterative Coupling Linearization (ICL), which is faster when the

game is near-zero-sum and with imbalanced conditioning ;
▶ We apply our method to regularized matrix games and competitive

games with small additional incentives.
Future work:
▶ Lower complexity bounds;
▶ Removal of the double logarithm;
▶ Non-Euclidean spaces (Mirror Prox15);
▶ Applications in other practical settings.

15Nemirovski, “Prox-method with rate of convergence O (1/t) for variational
inequalities with Lipschitz continuous monotone operators and smooth convex-concave
saddle point problems”.

Ruichen Luo (ISTA) Monotone Near-Zero-Sum Games Group Seminar 2025 28 / 28



Conclusion

In this work:
▶ We define a new, intermediate class of monotone near-zero-sum games;
▶ We propose Iterative Coupling Linearization (ICL), which is faster when the

game is near-zero-sum and with imbalanced conditioning ;
▶ We apply our method to regularized matrix games and competitive

games with small additional incentives.
Future work:
▶ Lower complexity bounds;
▶ Removal of the double logarithm;
▶ Non-Euclidean spaces (Mirror Prox15);
▶ Applications in other practical settings.

15Nemirovski, “Prox-method with rate of convergence O (1/t) for variational
inequalities with Lipschitz continuous monotone operators and smooth convex-concave
saddle point problems”.

Ruichen Luo (ISTA) Monotone Near-Zero-Sum Games Group Seminar 2025 28 / 28


	Introduction
	New Class
	Algorithm and Analysis
	Iterative Coupling Linearization
	Convergence Analysis

	Application Examples
	Numerical Experiments

