Revisiting LocalSGD and SCAFFOLD: Improved Rates and Missing Analysis

Ruichen Luo, Sebastian Stich, Samuel Horvath and Martin Takac stich@cispa.de {samuel.horvath, martin.takac}@mbzuai.ac.ae rluo@ista.ac.at

Optimization Problem

Distributed stochastic (non-convex) optimization:

$$\min_{\mathbf{x}\in\mathbb{R}^d} f(\mathbf{x}) := rac{1}{n} \sum_{i=1}^n f_i(\mathbf{x}),$$

where f_i 's are L-smooth and f is bounded below. **Stochastic gradients:** for $t \in [0, T - 1]$, $i \in [n]$,

 $\mathbb{E}\left[\mathbf{g}_{t}^{i}\right] = \nabla f_{i}(\mathbf{x}_{t}^{i}), \quad \mathbb{E}\left\|\mathbf{g}_{t}^{i} - \nabla f_{i}(\mathbf{x}_{t}^{i})\right\|_{2}^{2} \leq \sigma^{2}.$

some $\zeta \geq 0$, we have

$$\sup_{\mathbf{x}\in\mathbb{R}^d}\frac{1}{n}\sum_{i=1}^n \|\nabla f_i(\mathbf{x})-\nabla f(\mathbf{x})\|_2^2 \leq \zeta^2.$$

Assumption 1+ (Uniform gradient similarity). For some $\zeta \geq 0$, we have

> $\sup \sup \|\nabla f_i(\mathbf{x}) - \nabla f(\mathbf{x})\|_2^2 \leq \overline{\zeta}^2$ $\mathbf{x} \in \mathbb{R}^d \ i \in [n]$

Assumptions

Assumption 1 (Standard gradient similarity). For Assumption 2+ (Uniform Hessian similarity). For some $\delta \in [0, 2L]$, we have

> $\|\nabla f_i(\mathbf{x}) - \nabla f(\mathbf{x}) - \nabla f_i(\mathbf{y}) + \nabla f(\mathbf{y})\|_2$ $\leq \overline{\delta} \|\mathbf{x} - \mathbf{y}\|_2$, $\forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^d$, $\forall i \in [n]$.

Assumption 3 (Weak convexity). *For some* $\rho \in [0, L]$, we have

Communication interval: τ (*T* is a multiple of τ). **Notations:** $\overline{\mathbf{x}}_t = \frac{1}{n} \sum_{i=1}^n \mathbf{x}_t^i$, $f^* = \inf_{\mathbf{x} \in \mathbb{R}^d} f(\mathbf{x})$, $arDelta=f(\overline{\mathbf{x}}_0)-f^*$.

MbSGD vs. LocalSGD/SCAFFOLD

MbSGD: $T = R\tau$. For $t \in [0, T - 1]$, $i \in [n]$,

 $\mathbf{x}_{t+1}^{i} = \begin{cases} \overline{\mathbf{x}}_{t-\tau+1} - \frac{\eta}{n} \sum_{j=1}^{n} \sum_{k=0}^{\tau-1} \mathbf{g}_{t-k}^{j}, \\ \text{if } t+1 \text{ is a multiple of } \tau, \\ \mathbf{x}_{t}^{i}, & \text{otherwise.} \end{cases}$

LocalSGD: $T = R\tau$. For $t \in [0, T - 1]$, $i \in [n]$,

$$\mathbf{x}_{t+1}^{i} = \begin{cases} \overline{\mathbf{x}}_{t-\tau+1} - \frac{\eta}{n} \sum_{j=1}^{n} \sum_{k=0}^{\tau-1} \mathbf{g}_{t-k}^{j}, \\ \text{if } t+1 \text{ is a multiple of } \tau, \\ \mathbf{x}_{t}^{i} - \eta \mathbf{g}_{t}^{i}, \end{cases} \text{ otherwise.}$$

SCAFFOLD [Kar+20]: $T = 2R\tau$.

Assumption 2 (Standard Hessian similarity). For some $\delta \in [0, L]$, we have

$$egin{aligned} &rac{1}{n}\sum_{i=1}^n \|
abla f_i(\mathbf{x})-
abla f(\mathbf{x})-
abla f_i(\mathbf{y})+
abla f(\mathbf{y})\|_2^2\ &\leq \delta^2 \,\|\mathbf{x}-\mathbf{y}\|_2^2\,,\quad orall \mathbf{x},\mathbf{y}\in \mathbb{R}^d\,. \end{aligned}$$

Existing Analysis

Lemma 1. There exists η 0 such that >MbSGD ensures the following upper bound on $\frac{1}{T}\sum_{t=0}^{T-1}\mathbb{E}\left\|\nabla f(\overline{\mathbf{x}}_t)\right\|_2^2$

$$\mathcal{O}\left(\frac{L\Delta}{R}+\sqrt{\frac{L\Delta\sigma^2}{n\tau R}}\right).$$

Lemma 2 ([Kol+20]). Under Assumption 1, there exists $\eta > 0$ such that LocalSGD ensures the following upper bound on $\frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E} \|\nabla f(\overline{\mathbf{x}}_t)\|_2^2$:

 $f_i(\mathbf{x}) + \frac{p}{2}\mathbf{x}'\mathbf{x}$ is convex, $\forall i \in [n]$.

Assumption 4 (Lipschitz continuous Hessian). For some $\mathcal{M} \geq 0$, there exists (at least) one function f such that: $f \in \mathbf{conv}\{f_1, \cdots, f_n\}$, and

$$\left\|
abla^2 \widehat{f}(\mathbf{x}) -
abla^2 \widehat{f}(\mathbf{y})
ight\|_2 \leq \mathcal{M} \left\| \mathbf{x} - \mathbf{y}
ight\|_2, \quad \mathbf{x}, \mathbf{y} \in \mathbb{R}^d$$

Our Analysis

Theorem 1. Under Assumptions 1 and 3, there exists $\eta > 0$ such that LocalSGD ensures the following upper bound on $\frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E} \|\nabla f(\overline{\mathbf{x}}_t)\|_2^2$:

 $\mathcal{O}\left(\left(\frac{L}{\tau}+\rho\right)\frac{\Delta}{R}+\sqrt{\frac{L\Delta\sigma^{2}}{n\tau R}}+\left(\frac{L\Delta\zeta}{R}\right)^{\frac{2}{3}}+\frac{(L\Delta\sigma)^{\frac{2}{3}}}{\tau^{\frac{1}{3}}R^{\frac{2}{3}}}\right)$

Theorem 2. Under Assumption 1, if all the local functions f_i are convex, $\mathbf{x}^* \in \arg \min_{\mathbf{x} \in \mathbb{R}^d} f(\mathbf{x})$, and there exists some $D \ge 0$ such that $\|\overline{\mathbf{x}}_0 - \mathbf{x}^*\|_2 \le D$, then there exists $\eta > 0$ such that LocalSGD ensures the following upper bound on $\frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E}[f(\overline{\mathbf{x}}_t)] - \mathbf{x}_t$

Algorithm 1 SCAFFOLD

- 1: for $r = 0, 1, \cdots, R 1$ do for $i \in [n]$ do in parallel 2: for $k = 0, 1, \cdots, \tau - 1$ do 3: $\mathbf{x}_{2r\tau+k+1}' = \mathbf{x}_{2r\tau+k}'$ 4: end for 5: $\widehat{\mathbf{g}}_{(r au)}^{i} = \frac{1}{\tau} \sum_{k=0}^{\tau-1} \mathbf{g}_{2r au+k}^{i}$ 6: end for 7: Compute and broadcast: $\widehat{\mathbf{g}}_{(r\tau)} = \frac{1}{n} \sum_{i=1}^{n} \widehat{\mathbf{g}}_{(r\tau)}^{i}$ 8: for $i \in [n]$ do in parallel 9: for $k = \tau, \tau + 1, \cdots, 2\tau - 2$ do 10: 11: $\mathbf{x}_{2r\tau+k+1}' = \mathbf{x}_{2r\tau+k}'$ $-\eta\left(\mathbf{g}_{2r\tau+k}^{i}-\widehat{\mathbf{g}}_{(r\tau)}^{i}+\widehat{\mathbf{g}}_{(r\tau)}\right)$ end for 12:
- end for 13:
- 14: Compute:

$$\overline{\mathbf{x}}_{2(r+1)\tau} = \overline{\mathbf{x}}_{2r\tau} - \frac{\eta}{n} \sum_{j=1}^{n} \sum_{l=\tau}^{2\tau-1} \mathbf{g}_{2r\tau+l}^{j}$$

15: Broadcast: $\mathbf{x}'_{2(r+1)\tau} = \overline{\mathbf{x}}_{2(r+1)\tau}$, for $i \in [n]$ 16: **end for**

$$\mathcal{O}\left(\frac{L\Delta}{R} + \sqrt{\frac{L\Delta\sigma^2}{n\tau R}} + \left(\frac{L\Delta\zeta}{R}\right)^{\frac{2}{3}} + \frac{(L\Delta\sigma)^{\frac{2}{3}}}{\tau^{\frac{1}{3}}R^{\frac{2}{3}}}\right)$$

Lemma 3 ([WPS20]). Under Assumption 1+, if all the local functions f_i are convex, $\mathbf{x}^* \in \mathbf{x}$ arg min_{$x \in \mathbb{R}^d$} f(x), and there exists some $D \ge 0$ such that $\|\overline{\mathbf{x}}_0 - \mathbf{x}^*\|_2 \leq D$, then there exists $\eta > 0$ such that LocalSGD ensures the following upper bound on $\frac{1}{T}\sum_{t=0}^{I-1}\mathbb{E}\left[f\left(\overline{\mathbf{x}}_{t}\right)\right]-f^{*}:$

$$\mathcal{O}\left(\frac{LD^2}{\tau R} + \frac{\sigma D}{\sqrt{n\tau R}} + \left(\frac{L\overline{\zeta}^2 D^4}{R^2}\right)^{\frac{1}{3}} + \left(\frac{L\sigma^2 D^4}{\tau R^2}\right)^{\frac{1}{3}}\right)$$

Lemma 4 ([Kar+20]). Suppose in Line 14 of Algorithm 1, a different global stepsize η_g can be used when aggregating the updates. There exists $\eta_g \geq \eta_g$ $\eta > 0$ such that SCAFFOLD ensures the following upper bound on $\frac{1}{R} \sum_{r=0}^{R-1} \mathbb{E} \|\nabla f(\overline{\mathbf{x}}_{2r\tau})\|_2^2$:

$$f^*:$$

$$\mathcal{O}\left(\frac{LD^2}{\tau R} + \frac{\sigma D}{\sqrt{n\tau R}} + \left(\frac{L\zeta^2 D^4}{R^2}\right)^{\frac{1}{3}} + \left(\frac{L\sigma^2 D^4}{\tau R^2}\right)^{\frac{1}{3}}\right)$$

Theorem 3. Under Assumptions 1, 2+ and 4, there exists $\eta > 0$ such that LocalSGD ensures the following upper bound on $\frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E} \|\nabla f(\overline{\mathbf{x}}_t)\|_2^2$:

$$D\left(\frac{L\Delta}{R} + \sqrt{\frac{L\Delta\sigma^2}{n\tau R}} + \left(\frac{\overline{\delta}\Delta\zeta}{R}\right)^{\frac{2}{3}} + \frac{(L\Delta\sigma)^{\frac{2}{3}}}{\tau^{\frac{1}{3}}R^{\frac{2}{3}}} + \left(\frac{\mathcal{M}^2\Delta^4\zeta^4}{R^4}\right)^{\frac{1}{5}}\right).$$

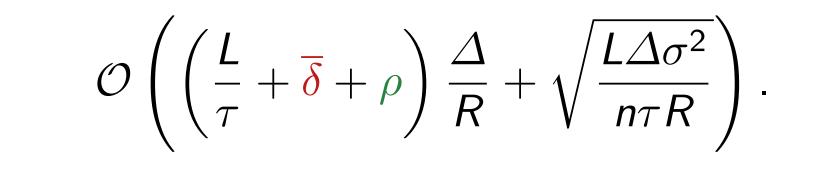
Theorem 4. Under Assumptions 2 and 3, there exists $\eta > 0$ such that SCAFFOLD ensures the following upper bound on $\frac{2}{T} \sum_{r=0}^{R-1} \sum_{k=0}^{\tau-1} \mathbb{E} \|\nabla f(\overline{\mathbf{x}}_{2r\tau+\tau+k})\|_{2}^{2}$:

REFERENCES:

- Sai Praneeth Karimireddy et al. "Scaffold: [Kar+20] Stochastic controlled averaging for federated learning". In: ICML. 2020.
- Anastasia Koloskova et al. "A unified the-[Kol+20] ory of decentralized sgd with changing topology and local updates". In: ICML. 2020.
- [WPS20] Blake E Woodworth, Kumar Kshitij Patel, and Nati Srebro. "Minibatch vs local sgd for heterogeneous distributed learning". In: *NIPS*. 2020.

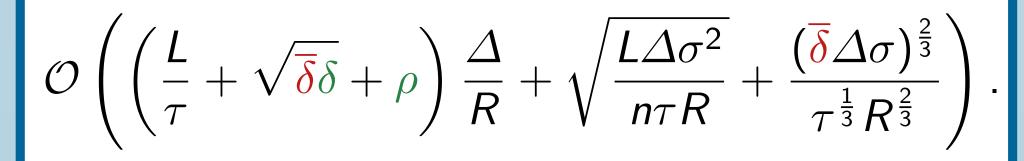
 $\mathcal{O}\left(\frac{L\Delta}{R}+\sqrt{\frac{L\Delta\sigma^2}{n\tau R}}\right).$

Lemma 5 ([Kar+20]). Suppose $\widehat{\mathbf{g}}_{(r\tau)}^{i} = \nabla f_{i}(\overline{\mathbf{x}}_{2r\tau})$ in Line 6 of Algorithm 1. Under Assumptions 2+ and 3, if all f_i are quadratic, then there exists $\eta > 0$ such that SCAFFOLD ensures the following upper bound on $\frac{2}{T} \sum_{r=0}^{R-1} \sum_{k=0}^{\tau-1} \mathbb{E} \|\nabla f(\bar{\mathbf{x}}_{2r\tau+\tau+k})\|_2^2$:



Remark. There is no theoretical speedup without MORE RESTRICTIVE ASSUMPTIONS!

 $\mathcal{O}\left(\left(\frac{L}{\tau}+\sqrt{L\delta}+\rho\right)\frac{\Delta}{R}+\sqrt{\frac{L\Delta\sigma^2}{n\tau R}}+\frac{(L\Delta\sigma)^{\frac{2}{3}}}{\tau^{\frac{1}{3}}R^{\frac{2}{3}}}\right).$ **Theorem 5.** Under Assumptions 2 to 4 with 0, there exists $\eta > 0$ s.t. SCAF- \mathcal{M} \equiv FOLD ensures the following upper bound on $\frac{2}{T} \sum_{r=0}^{R-1} \sum_{k=0}^{\tau-1} \mathbb{E} \|\nabla f(\bar{\mathbf{x}}_{2r\tau+\tau+k})\|_{2}^{2}:$



Remark. OUR ANALYSES ARE BASED ON EXISTING OR WEAKER ASSUMPTIONS!