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Optimization Problem
Distributed stochastic (non-convex) optimization:

min
x∈Rd

f (x) := 1
n

n∑
i=1

fi(x) ,

where fi ’s are L-smooth and f is bounded below.

Stochastic gradients: for t ∈ [0, T − 1], i ∈ [n],

E
[
gi

t
]

= ∇fi(xi
t), E

∥∥gi
t − ∇fi(xi

t)
∥∥2

2 ≤ σ2 .

Communication interval: τ (T is a multiple of τ ).
Notations: xt = 1

n
∑n

i=1 xi
t , f ∗ = infx∈Rd f (x) ,

∆ = f (x0) − f ∗ .

MbSGD vs. LocalSGD/SCAFFOLD
MbSGD: T = Rτ . For t ∈ [0, T − 1], i ∈ [n],

xi
t+1 =


xt−τ+1 − η

n
∑n

j=1
∑τ−1

k=0 gj
t−k ,

if t + 1 is a multiple of τ ,
xi

t , otherwise.

LocalSGD: T = Rτ . For t ∈ [0, T − 1], i ∈ [n],

xi
t+1 =


xt−τ+1 − η

n
∑n

j=1
∑τ−1

k=0 gj
t−k ,

if t + 1 is a multiple of τ ,
xi

t − ηgi
t , otherwise.

SCAFFOLD [Kar+20]: T = 2Rτ .

Algorithm 1 SCAFFOLD

1: for r = 0, 1, · · · , R − 1 do

2: for i ∈ [n] do in parallel

3: for k = 0, 1, · · · , τ − 1 do

4: xi
2rτ+k+1 = xi

2rτ+k
5: end for

6: ĝi
(rτ) = 1

τ

∑τ−1
k=0 gi

2rτ+k
7: end for

8: Compute and broadcast: ĝ(rτ) = 1
n
∑n

i=1 ĝi
(rτ)

9: for i ∈ [n] do in parallel

10: for k = τ , τ + 1, · · · , 2τ − 2 do

11:

xi
2rτ+k+1 = xi

2rτ+k

− η
(
gi

2rτ+k − ĝi
(rτ) + ĝ(rτ)

)
12: end for

13: end for

14: Compute:

x2(r+1)τ = x2rτ − η

n

n∑
j=1

2τ−1∑
l=τ

gj
2rτ+l

15: Broadcast: xi
2(r+1)τ = x2(r+1)τ , for i ∈ [n]

16: end for
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Assumptions
Assumption 1 (Standard gradient similarity). For

some ζ ≥ 0, we have

sup
x∈Rd

1
n

n∑
i=1

‖∇fi(x) − ∇f (x)‖2
2 ≤ ζ2.

Assumption 1+ (Uniform gradient similarity). For

some ζ ≥ 0, we have

sup
x∈Rd

sup
i∈[n]

‖∇fi(x) − ∇f (x)‖2
2 ≤ ζ2

Assumption 2 (Standard Hessian similarity). For

some δ ∈ [0, L], we have

1
n

n∑
i=1

‖∇fi(x) − ∇f (x) − ∇fi(y) + ∇f (y)‖2
2

≤ δ2 ‖x − y‖2
2 , ∀x, y ∈ Rd .

Assumption 2+ (Uniform Hessian similarity). For

some δ ∈ [0, 2L], we have

‖∇fi(x) − ∇f (x) − ∇fi(y) + ∇f (y)‖2

≤ δ ‖x − y‖2 , ∀x, y ∈ Rd , ∀i ∈ [n] .

Assumption 3 (Weak convexity). For some ρ ∈ [0, L],
we have

fi(x) + ρ

2xTx is convex, ∀i ∈ [n] .

Assumption 4 (Lipschitz continuous Hessian). For

some M ≥ 0, there exists (at least) one function f̂
such that: f̂ ∈ conv{f1, · · · , fn}, and∥∥∥∇2 f̂ (x) − ∇2 f̂ (y)

∥∥∥
2

≤ M ‖x − y‖2 , x, y ∈ Rd .

Existing Analysis
Lemma 1. There exists η > 0 such that

MbSGD ensures the following upper bound on
1
T
∑T−1

t=0 E ‖∇f (xt)‖2
2:

O

(
L∆

R +
√

L∆σ2

nτR

)
.

Lemma 2 ([Kol+20]). Under Assumption 1, there ex-

ists η > 0 such that LocalSGD ensures the following

upper bound on 1
T
∑T−1

t=0 E ‖∇f (xt)‖2
2:

O

(
L∆

R +
√

L∆σ2

nτR +
(

L∆ζ

R

) 2
3

+ (L∆σ) 2
3

τ
1
3 R 2

3

)
.

Lemma 3 ([WPS20]). Under Assumption 1+, if

all the local functions fi are convex, x∗ ∈
arg minx∈Rd f (x), and there exists some D ≥ 0 such

that ‖x0 − x∗‖2 ≤ D, then there exists η > 0 such

that LocalSGD ensures the following upper bound on
1
T
∑T−1

t=0 E [f (xt)] − f ∗:

O

LD2

τR + σD√
nτR

+
(

Lζ
2D4

R2

) 1
3

+
(

Lσ2D4

τR2

) 1
3

 .

Lemma 4 ([Kar+20]). Suppose in Line 14 of Algo-

rithm 1, a different global stepsize ηg can be used

when aggregating the updates. There exists ηg ≥
η > 0 such that SCAFFOLD ensures the following

upper bound on 1
R
∑R−1

r=0 E ‖∇f (x2rτ )‖2
2:

O

(
L∆

R +
√

L∆σ2

nτR

)
.

Lemma 5 ([Kar+20]). Suppose ĝi
(rτ) = ∇fi(x2rτ ) in

Line 6 of Algorithm 1. Under Assumptions 2+ and 3,

if all fi are quadratic, then there exists η > 0 such

that SCAFFOLD ensures the following upper bound

on 2
T
∑R−1

r=0
∑τ−1

k=0 E ‖∇f (x2rτ+τ+k)‖2
2:

O

((
L
τ

+ δ + ρ

)
∆

R +
√

L∆σ2

nτR

)
.

Remark. THERE IS NO THEORETICAL SPEEDUPWITHOUT

MORE RESTRICTIVE ASSUMPTIONS!

Our Analysis
Theorem 1. Under Assumptions 1 and 3, there ex-

ists η > 0 such that LocalSGD ensures the following

upper bound on 1
T
∑T−1

t=0 E ‖∇f (xt)‖2
2:

O

((L
τ

+ ρ
)

∆

R +
√

L∆σ2

nτR +
(L∆ζ

R

) 2
3

+ (L∆σ) 2
3

τ
1
3 R 2

3

)
.

Theorem 2. Under Assumption 1, if all the local

functions fi are convex, x∗ ∈ arg minx∈Rd f (x), and
there exists some D ≥ 0 such that ‖x0 − x∗‖2 ≤ D,

then there exists η > 0 such that LocalSGD ensures

the following upper bound on 1
T
∑T−1

t=0 E [f (xt)] −
f ∗:

O

LD2

τR + σD√
nτR

+
(

Lζ2D4

R2

) 1
3

+
(

Lσ2D4

τR2

) 1
3

 .

Theorem 3. Under Assumptions 1, 2+ and 4, there

exists η > 0 such that LocalSGD ensures the follow-

ing upper bound on 1
T
∑T−1

t=0 E ‖∇f (xt)‖2
2:

O

(
L∆

R +
√

L∆σ2

nτR +
(

δ∆ζ

R

) 2
3

+ (L∆σ) 2
3

τ
1
3 R 2

3
+
(

M2∆4ζ4

R4

) 1
5
)

.

Theorem4. Under Assumptions 2 and3, there exists

η > 0 such that SCAFFOLD ensures the following up-

per bound on 2
T
∑R−1

r=0
∑τ−1

k=0 E ‖∇f (x2rτ+τ+k)‖2
2:

O

((
L
τ

+
√

Lδ + ρ

)
∆

R +
√

L∆σ2

nτR + (L∆σ) 2
3

τ
1
3 R 2

3

)
.

Theorem 5. Under Assumptions 2 to 4 with

M = 0, there exists η > 0 s.t. SCAF-
FOLD ensures the following upper bound on
2
T
∑R−1

r=0
∑τ−1

k=0 E ‖∇f (x2rτ+τ+k)‖2
2:

O

((
L
τ

+
√

δδ + ρ

)
∆

R +
√

L∆σ2

nτR + (δ∆σ) 2
3

τ
1
3 R 2

3

)
.

Remark. OUR ANALYSES ARE BASED ON EXISTING OR

WEAKER ASSUMPTIONS!


